论文部分内容阅读
模糊聚类分析法在矿区水文地质参数分区中的应用
【出 处】
:
冶金地质动态
【发表日期】
:
1991年8期
其他文献
不同的聚类算法用于设计各自的策略,然而,每种技术在执行特定数据集时都有一定的局限性。选择恰当的识别信息方法(DIM)可确保文档聚类的进行。针对这些问题提出一种基于共识和分类的文档聚类(DCCC)的DIM。首先,选择识别信息最大化聚类(CDIM)作为数据集生成初始聚类的解决方法,并使用两种不同的CDIM方法生成两个初始聚集;其次,使用不同的参数方法对两初始聚集再进行初始化,通过簇标签信息间的关系建立
天气状况对室外视频设备的成像效果有很大影响。为实现成像设备在恶劣天气下的自适应调整,从而提升智能监控系统的效果,同时针对传统的天气图像判别方法分类效果差且对相近天气现象不易分类的不足,以及深度学习方法识别天气准确率不高的问题,提出了一个将传统方法与深度学习方法相结合的特征融合模型。融合模型采用4种人工设计算法提取传统特征,采用AlexNet提取深层特征,利用融合后的特征向量进行图像天气状况的判别。
《天津市通信基础设施专项提升计划(2018~2020年)》日前正式印发,天津在开展“千兆小区”试点的同时,逐步推广千兆光纤网络接入业务,到2020年底,天津家庭光纤宽带用户接入速
针对传统目标检测算法应用在无人机航拍图像上第三方施工目标检测和违章占压建筑检测的数据集少、检测率低等问题,提出基于Aerial-YOLOv2和迁移学习的航拍图像目标检测算法。首先,利用结合数据增强的迁移学习策略训练的网络来扩大数据集规模,并利用K均值聚类分析得到符合所提数据集特点的锚点框数量和尺寸;其次,通过自适应对比度增强的方法对图像进行预处理;最后,提出改进卷积模块替代YOLOv2中的卷积块并
在图像分类的实际应用过程中,部分类别可能完全没有带标签的训练数据。零样本学习(ZSL)的目的是将带标签类别的图像特征等知识迁移到无标签的类别上,实现无标签类别的正确分类。现有方法在测试时无法显式地区分输入图像属于已知类还是未知类,很大程度上导致未知类在传统设定下的ZSL和广义设定下的ZSL(GZSL)上的预测效果相差甚远。为此,提出一种融合视觉误差与属性语义信息的方法来缓解零样本图像分类中的预测偏
针对中文影评情感分类中缺少特征属性及情感强度层面的粒度划分问题,提出一种基于本体特征的细粒度情感分类模型。首先,利用词频逆文档频率(TF-IDF)和TextRank算法提取电影特征,构建本体概念模型。其次,将电影特征属性和普鲁契克多维度情绪模型与双向长短时记忆网络(Bi-LSTM)融合,构建了在特征粒度层面和八分类情感强度下的细粒度情感分类模型。实验中,本体特征分析表明:观影人对故事属性关注度最高
遗传修饰(Genetically modified)食物就是用改变动植物原有某些基因的结构或引入感兴趣的基因所产生的食物,因而也称“基因改造食物”。目前,有些遗传修饰食物已得到西方某些国
1991年9月一个晴朗的日子,一对夫妇在阿尔卑斯山脉一座高高的山脊上行走时,遇见一具尸体,从融化的冰里露了出来。他们返回临时歇息的棚屋,立即报告了当地警察,而警方认为这多半是
在当今市场经济大潮中,医院要生存发展,防范医疗纠纷是一项重要举措。现对我院门诊2001~2004年所接到的护理投诉20例进行分析、思考,以寻求防范措施。