论文部分内容阅读
电力负荷预测的准确性直接影响到电力系统的安全性和经济性,但在应用神经网络进行短期负测精度造成了显著的负面影响。针对这一问题,本文采用多元统计分析中的主成分分析,根据各主成分贡献率对输入空间进行约简,提取线性无关的输入变量,以此达到压缩变量维数的目的,然后利用考虑模型输入变量相互关系的递推合成BP网络进行预测,使之更符合电力短期负荷预测的特点,提高模型的预测精度。仿真实验的结果表明,该简化模型用于短期负荷预测建模速度快、预测精度高,是一种行之有效的方法。