论文部分内容阅读
针对传统K均值聚类算法在非均质路网划分应用中的不足,将路网连接性融入算法,解决其在路网划分应用中聚类结果不连续的问题.先使用最大最小距离算法确定初始聚类中心和路段差异性,并以聚类评价指标ANSK确定K值;然后统计连续时间间隔下路网划分结果的动态频数,合并和拆分不稳定的“噪声”路段,提高划分子区内路网的紧凑性.最后,基于现实路网中的车牌照自动识别实测数据,对改进的聚类方法进行了验证.将算法得到的划分效果与K均值聚类算法和Ncut算法进行对比,并对子区做宏观基本图分析.结果表明,改进后的K均值聚类算法在保证自