论文部分内容阅读
目的表观模型对视觉目标跟踪的性能起着决定性的作用。基于网络调制的跟踪算法通过构建高效的子网络学习参考帧目标的表观信息,以用于测试帧目标的鲁棒匹配,在多个目标跟踪数据集上表现优异。但是,这类跟踪算法忽视了高阶信息对鲁棒建模物体表观的重要作用,致使在物体表观发生大尺度变化时易产生跟踪漂移。为此本文提出全局上下文信息增强的二阶池化调制子网络,以学习高阶特征提升跟踪器的性能。方法首先,利用卷积神经网络(convolutional neural networks,CNN)提取参考帧和测试帧的特征;然后,对提取