论文部分内容阅读
摘要:目前我国经济发展迅速,火力发电厂为我国发展做出了很大贡献。对于我国的火力发电厂来说,汽机热力系统是必不可少的,能够为火力发电厂的火力发电工作提供稳定、充足的能量。但是在实际中,汽机热力系统的能量利用率较低,容易出现各种问题,使得火力发电厂整体的效率得不到提高,生产运行时的能耗也得不到降低。要想推动火力发电厂的发展,推动我国电力行业的发展进步,就需要对汽机热力系统运行进行优化,实现汽机热力系统运行的稳定、高效,最终才能推动电厂整体效率的提高。
关键词:电厂汽机;热力系统;运行优化
引言
一般情况下,火电厂汽机通常要借助于煤炭才得以正常操作运行,假若汽机在实际运行过程中发生故障问题,将直接对电力能源的生产效果产生一定的不良影响。汽机故障不仅严重影响使用效率,并且会加剧环境污染问题,对于电厂的可持续发展造成恶劣的破坏。故此,为了实现节能环保的发展目的,电厂应该及时对汽机出现的故障问题展开深入研究,并明确出现故障的具体原因,探寻出可靠地解决方案等,进而提升电力能源的利用效率,促进火电厂的长远发展。
1优化工作前的优化重点和优化原则
优化工作需根据实际情况展开分析,明确优化原则后展开工作。汽机热力系统的能量转换效率是优化工作的重点,影响因素可分为外部因素、能效因素及运行因素。其中,能效因素对热力系统的影响较大,可作为主要优化方向展开。此外,优化工作需以优化原则为开展基础,如重视优化过程中的主辅设备能耗、重视优化过程中的设备检修工作及重视机组运行参数的优化等。优化工作中需重视优化原则,以有效保障汽机的运行,获取现有条件,进而有效地开展分析和预测。
2影响电厂汽机热力系统运行的因素
汽机热力系统的运行是完全遵循能量守恒定律的,因此,可以从能量守恒定律入手对汽机热力系统的运行效率进行研究分析,并得出相应的运行效率影响因素。通过分析电厂汽机热力系统可以发现,其运行效率影响因素主要有两种,一种是不可控的因素,另一种是可控的因素。可控因素显而易见,就是可以被人为控制的因素,比如汽机热力系统的温度、压力和高压内缸的实际效率等,这些可控因素很容易破坏汽机热力系统的内循环,使得汽机热力系统在运行时内部无法实现有效循环,对能量的利用率低,容易造成较大的损耗。不可控因素无法通过人为的事先干预而消除,主要有汽机热力系统排污、锅炉排污等,汽机热力系统在进行排污时,会向外界排出大量的物质,在这一过程中往往会携带着部分能量,所以说这些因素会导致汽机热力系统内部的能量出现损失,导致汽机热力系统的运行效率降低,并且汽机热力系统要想保持原有的能量,就需要消耗更多的原材料来填补排污所造成的能量损失,这也会导致汽机热力系统运行成本的增加。
在对电厂汽机热力系统进行运行优化时,应当对可控影响因素进行细致分析,重点解决这些可控的因素,减少这些可控因素对汽机热力系统带来的影响,对于不可控因素来说,就需要提前进行准备,制定相关的应对措施,并做好相应的弥补工作。
3对电厂汽机热力系统运行进行优化的重点
3.1机组能效优化
机组能效优化为优化的首要措施。机组能效优化中,应注重优化设备疏水管和汽封间隙。此优化手段基于设备原理展开,汽机的构造中存在多个高压导气管。高压导气管间存在一定数量的疏水管,疏水管可有效排出因设备运行产生的一系列凝结水,以保障设备内部稳定。但现阶段高压导气管距离较近,且高压导气管的工作效率较高,使设备内部基本不存在水蒸气,进而无法产生凝结水。因此,可取消疏水管,以减少设备内部设施,有效提升能效。删减疏水管后,汽封间隙和组汽间隙缩小,降低了蒸汽损失,提升了能效利用。但需注意,取消疏水管后,需保障高压缸调节级后方的疏水阀正常,一旦设备内部出现少量蒸汽,可通过疏水阀排出,实现运作需求。
3.2疏水系统能效优化
①机组有较多的疏水阀阀门,且频繁出现阀门内漏问题,从而导致系统热能损失。实际上,汽机机组阀门内漏量较多,外漏量较少,给系统的经济性造成较大影响的是高温高压管道上的疏水阀门的泄漏。阀门前后差压大、工作条件恶劣和机组启停时的蒸汽冲刷是导致系统部门疏水阀门泄漏的主要原因,同时不同原因造成的内漏程度不同,对系统造成的影响程度也不同。可以通过定期检查机组的各类疏、放水阀,及时修理和更换泄漏阀门,解决汽机阀门内漏问题。主蒸汽、再热汽和抽汽系统的管道和阀门对机组的正常运行至关重要,一旦其存在内漏问题那么影响严重,因此必须加以重视,对这些部位进行重点检修;②在部分汽机设备中,中压缸的启动需要使用高压缸上的排气通风阀。但系统进行倒缸操作的前提是汽机转速务必达到每分钟2650转,该状况下的汽轮机中压缸启动功能是无效功能。为了提高系统能效,可适当减少通风阀。
3.3轴封系统和辅助蒸汽系统的优化
轴封系统和辅助蒸汽系统的优化是优化工作的重点。第一,轴封系统的优化。应利用布莱登汽封,它的间隙更小、漏气量更低以及抗磨损能力更强,有效解决了汽封间隙和汽封漏气的现象。同时,布莱登汽封可增加轴封加热器面积,有效提升系统热能利用率。第二,辅助蒸汽系统的优化。辅助系统中加入凝气器,可有效提升系统热能利用率。此外,可利用自动疏水器代替辅助蒸汽系统的疏水阀,既保障了主蒸汽系统的热备用状态,又减少了凝汽器的收入量。
4系统运行操作优化
4.1汽泵启动优化
汽泵启动过程中其耗电量巨大,花费时间长达20小时,因此在机组启停过程中优化汽泵启动过程,可以有效减少汽机耗电量,提升汽机热力系统的能效。①只有利用辅汽汽源,才能实现机组启动时汽泵的全程启动。具体流程为:先利用高辅汽源冲动小机给锅炉供水,再给锅炉点火。但保证汽泵再循环门在锅炉上水的过程中保持全开的状态,并在机组冷态启动点火后,务必对其振动情况进行监测,并全程通过汽泵给水;②除了在机组破坏真空前将汽泵运行停止外,从机组开始滑停直至结束全程均需汽泵给水。
4.2机组启动的优化
机组检修中应注意开展喷油实验,并以此作为主机超速实验展开;超速试验中需注意试验开始时间,即当机组带以10%额定负荷运行4h后展开,避免转子应力造成损坏;检修完成后,需注意主汽门的调整和检修。
结语
综上所述,电力资源在人类的社会生活中占据着至关重要的位置,并关系着人们的生活质量与工作状况等。汽机作为火电厂发电的重要设施之一,牵动着火电厂的电力生产质量与生产效率等,所以汽机的工作运行状态应该得到高度关注与重视,以保证火力发电厂正常的电力生产。进行电厂汽机热力系统运行优化,需要从两个大方面进行,分別是能效方面和操作方面。其中在能效方面的优化主要是对疏水系统、机组、轴封系统和辅助蒸汽系统的优化,在操作方面的优化主要是对机组和汽泵的启动过程进行优化,最终让汽机热力系统有着极高的运行效率,从而推动电厂整体效率的提升,促进电厂的发展。
参考文献
[1]王奔,司风琪,刘海军.燃煤电厂300MW机组循环水系统运行优化研究[J].热能动力工程,2017,32(11):78-85.
[2]周悦,胡 钢,江 冰,等.汽轮机热力性能计算软件设计与实现[J].微处理机,2016,37(2):65-69.
[3]王攀,王泳涛,王宝玉.汽轮机冷端优化运行和最佳背压的研究与应用[J].汽轮机技术,2016,58(1):55-57.
关键词:电厂汽机;热力系统;运行优化
引言
一般情况下,火电厂汽机通常要借助于煤炭才得以正常操作运行,假若汽机在实际运行过程中发生故障问题,将直接对电力能源的生产效果产生一定的不良影响。汽机故障不仅严重影响使用效率,并且会加剧环境污染问题,对于电厂的可持续发展造成恶劣的破坏。故此,为了实现节能环保的发展目的,电厂应该及时对汽机出现的故障问题展开深入研究,并明确出现故障的具体原因,探寻出可靠地解决方案等,进而提升电力能源的利用效率,促进火电厂的长远发展。
1优化工作前的优化重点和优化原则
优化工作需根据实际情况展开分析,明确优化原则后展开工作。汽机热力系统的能量转换效率是优化工作的重点,影响因素可分为外部因素、能效因素及运行因素。其中,能效因素对热力系统的影响较大,可作为主要优化方向展开。此外,优化工作需以优化原则为开展基础,如重视优化过程中的主辅设备能耗、重视优化过程中的设备检修工作及重视机组运行参数的优化等。优化工作中需重视优化原则,以有效保障汽机的运行,获取现有条件,进而有效地开展分析和预测。
2影响电厂汽机热力系统运行的因素
汽机热力系统的运行是完全遵循能量守恒定律的,因此,可以从能量守恒定律入手对汽机热力系统的运行效率进行研究分析,并得出相应的运行效率影响因素。通过分析电厂汽机热力系统可以发现,其运行效率影响因素主要有两种,一种是不可控的因素,另一种是可控的因素。可控因素显而易见,就是可以被人为控制的因素,比如汽机热力系统的温度、压力和高压内缸的实际效率等,这些可控因素很容易破坏汽机热力系统的内循环,使得汽机热力系统在运行时内部无法实现有效循环,对能量的利用率低,容易造成较大的损耗。不可控因素无法通过人为的事先干预而消除,主要有汽机热力系统排污、锅炉排污等,汽机热力系统在进行排污时,会向外界排出大量的物质,在这一过程中往往会携带着部分能量,所以说这些因素会导致汽机热力系统内部的能量出现损失,导致汽机热力系统的运行效率降低,并且汽机热力系统要想保持原有的能量,就需要消耗更多的原材料来填补排污所造成的能量损失,这也会导致汽机热力系统运行成本的增加。
在对电厂汽机热力系统进行运行优化时,应当对可控影响因素进行细致分析,重点解决这些可控的因素,减少这些可控因素对汽机热力系统带来的影响,对于不可控因素来说,就需要提前进行准备,制定相关的应对措施,并做好相应的弥补工作。
3对电厂汽机热力系统运行进行优化的重点
3.1机组能效优化
机组能效优化为优化的首要措施。机组能效优化中,应注重优化设备疏水管和汽封间隙。此优化手段基于设备原理展开,汽机的构造中存在多个高压导气管。高压导气管间存在一定数量的疏水管,疏水管可有效排出因设备运行产生的一系列凝结水,以保障设备内部稳定。但现阶段高压导气管距离较近,且高压导气管的工作效率较高,使设备内部基本不存在水蒸气,进而无法产生凝结水。因此,可取消疏水管,以减少设备内部设施,有效提升能效。删减疏水管后,汽封间隙和组汽间隙缩小,降低了蒸汽损失,提升了能效利用。但需注意,取消疏水管后,需保障高压缸调节级后方的疏水阀正常,一旦设备内部出现少量蒸汽,可通过疏水阀排出,实现运作需求。
3.2疏水系统能效优化
①机组有较多的疏水阀阀门,且频繁出现阀门内漏问题,从而导致系统热能损失。实际上,汽机机组阀门内漏量较多,外漏量较少,给系统的经济性造成较大影响的是高温高压管道上的疏水阀门的泄漏。阀门前后差压大、工作条件恶劣和机组启停时的蒸汽冲刷是导致系统部门疏水阀门泄漏的主要原因,同时不同原因造成的内漏程度不同,对系统造成的影响程度也不同。可以通过定期检查机组的各类疏、放水阀,及时修理和更换泄漏阀门,解决汽机阀门内漏问题。主蒸汽、再热汽和抽汽系统的管道和阀门对机组的正常运行至关重要,一旦其存在内漏问题那么影响严重,因此必须加以重视,对这些部位进行重点检修;②在部分汽机设备中,中压缸的启动需要使用高压缸上的排气通风阀。但系统进行倒缸操作的前提是汽机转速务必达到每分钟2650转,该状况下的汽轮机中压缸启动功能是无效功能。为了提高系统能效,可适当减少通风阀。
3.3轴封系统和辅助蒸汽系统的优化
轴封系统和辅助蒸汽系统的优化是优化工作的重点。第一,轴封系统的优化。应利用布莱登汽封,它的间隙更小、漏气量更低以及抗磨损能力更强,有效解决了汽封间隙和汽封漏气的现象。同时,布莱登汽封可增加轴封加热器面积,有效提升系统热能利用率。第二,辅助蒸汽系统的优化。辅助系统中加入凝气器,可有效提升系统热能利用率。此外,可利用自动疏水器代替辅助蒸汽系统的疏水阀,既保障了主蒸汽系统的热备用状态,又减少了凝汽器的收入量。
4系统运行操作优化
4.1汽泵启动优化
汽泵启动过程中其耗电量巨大,花费时间长达20小时,因此在机组启停过程中优化汽泵启动过程,可以有效减少汽机耗电量,提升汽机热力系统的能效。①只有利用辅汽汽源,才能实现机组启动时汽泵的全程启动。具体流程为:先利用高辅汽源冲动小机给锅炉供水,再给锅炉点火。但保证汽泵再循环门在锅炉上水的过程中保持全开的状态,并在机组冷态启动点火后,务必对其振动情况进行监测,并全程通过汽泵给水;②除了在机组破坏真空前将汽泵运行停止外,从机组开始滑停直至结束全程均需汽泵给水。
4.2机组启动的优化
机组检修中应注意开展喷油实验,并以此作为主机超速实验展开;超速试验中需注意试验开始时间,即当机组带以10%额定负荷运行4h后展开,避免转子应力造成损坏;检修完成后,需注意主汽门的调整和检修。
结语
综上所述,电力资源在人类的社会生活中占据着至关重要的位置,并关系着人们的生活质量与工作状况等。汽机作为火电厂发电的重要设施之一,牵动着火电厂的电力生产质量与生产效率等,所以汽机的工作运行状态应该得到高度关注与重视,以保证火力发电厂正常的电力生产。进行电厂汽机热力系统运行优化,需要从两个大方面进行,分別是能效方面和操作方面。其中在能效方面的优化主要是对疏水系统、机组、轴封系统和辅助蒸汽系统的优化,在操作方面的优化主要是对机组和汽泵的启动过程进行优化,最终让汽机热力系统有着极高的运行效率,从而推动电厂整体效率的提升,促进电厂的发展。
参考文献
[1]王奔,司风琪,刘海军.燃煤电厂300MW机组循环水系统运行优化研究[J].热能动力工程,2017,32(11):78-85.
[2]周悦,胡 钢,江 冰,等.汽轮机热力性能计算软件设计与实现[J].微处理机,2016,37(2):65-69.
[3]王攀,王泳涛,王宝玉.汽轮机冷端优化运行和最佳背压的研究与应用[J].汽轮机技术,2016,58(1):55-57.