论文部分内容阅读
设a、b、c、k是适合a+b=ck,gcd(a,b)=1,c∈{1,2,4},k>1且k在c=1或2时为奇数的正整数;又设ε=(()a+()-b)/()c,ε=(()n-()-b)/()c.本文证明了:当(a,b,c,k)≠(1,7,4,2)或(3,5,4,2)时,至多有1个大于1的正奇数n适合|(εn-εn)/(ε-ε)|=1,而且如此的n必为满足n<1+(2logn)/logk+2563.43(1+(21.96π)/logk)的奇素数.