减样相关论文
在使用支持向量机(SVM)分类时,存在以下两个问题:一是当存在噪点时,分类的精度低;二是对大规模样本集,训练时所需内存空间较大,运......
在使用支持向量机(SVM)分类时,存在以下两个问题:一是当存在噪点时,分类的精度低;二是对大规模样本集,训练时所需内存空间较大,运......
针对支持向量机在大规模数据集上训练效率慢问题,本文提出了一种基于核空间距离聚类的支持向量机减样方法;首先引入核空间的距离公......
提出了使用核空间K—means聚类算法从训练集中抽取特征边界支持向量集,在边界集上构造支持向量机的半定规划问题,由于边界集的规模比......
给出一种基于距离的减样方法,称为三步减样法(Three—step desampling method,TSDM)。根据概率论的知识定位定量分析了噪点及多余样本......
在分析传统样本缩减方法局限性的基础上,提出一种距离模型及样本的类内距离和类间距离的度量方法。给出利用该距离模型进行噪声识......
统计学习理论为研究小样本情况下机器学习问题提供了有力的理论基础。它使用结构风险最小化原则,综合了统计学习、机器学习和神经......