初始聚类中心点相关论文
基于FCM的大规模数据聚类算法设计中,聚类中心点选择的迭代次数较多易于造成算法模型伸缩性不强、敏感性较弱和陷入局部最小值的难......
聚类在数据挖掘领域应用广泛,但是传统的K-Means聚类算法存在对初始聚类中心点敏感以及需要人工设定聚类个数K等问题。针对这些问......
传统尽均值聚类算法虽然收敛速度快,但存在聚类数后无法预先确定,并且算法对初始中心点敏感的缺点。针对上述缺点,提出了基于密度期望......
基于密度聚类的思想,提出了一种改进的K—means算法。算法吸取密度聚类算法的优点,利用对象的t-邻域密度作为选择初始聚类中心点的条......
为解决Kmeans算法随机指定初始点聚类和海洋Argo浮标数据异常问题,提出一种改进Kmeans算法的海洋数据异常检测方法。提出一种改进K......