梯度惩罚相关论文
精确的云资源预测对计算平台实现安全运行具有十分重要的意义,针对新公司的云计算资源缺乏足够数据样本而造成预测模型精度降低的问......
照片是近现代以来历史发展,家庭变迁的重要载体,但是其在保存过程中因为保存方法问题常常使得照片内容遭到不同程度损害,可以使用......
在不平衡数据分类问题中,为了更注重学习原始样本的概率密度分布,提出了基于梯度惩罚生成对抗网络的过采样算法。该算法首先引入生成......
在实际工程应用中,滚动轴承在大多数时间都工作在正常状态下,故障状态时间很短。由于成本,让其长时间工作在故障状态是不现实的。这将......
近年来,在计算机视觉领域,深度学习推动了人脸识别、自动驾驶等很多技术的快速发展。但在实际应用中,深度学习模型需要大量的图像......
在实际智能设备的故障诊断中,往往很难获得大量的故障样本,这对基于机器学习的故障诊断的分类精度造成不可估量的影响。为了提高小样......
网络流量分类广泛应用于网络资源分配、流量调度、入侵检测系统等研究领域.随着加密协议的普及和网络流量快速发展,基于深度学习的......
风能作为清洁能源,近年来发展十分迅速,随着大规模风电机组的投入运行,其运行故障出现次数也随之增多。主轴承故障是风电机组中维......
基于振动信号的风电机组故障诊断方法是风电安全运维领域研究的重点之一.风电机组主轴承较少发生故障,给运用数据挖掘方法判断故障......
期刊
生成式对抗网络GAN功能强大,但是具有收敛速度慢、训练不稳定、生成样本多样性不足等缺点;该文结合条件深度卷积对抗网络CDCGAN和......
针对目前的遮挡人脸图像修复领域中遮挡部位与遮挡大小的限制或修复后人脸图像不够连贯等问题,提出一种改进的Wasserstein生成对抗......
针对神经网络在进行图像着色时容易出现物体边界不明确、图像着色质量不高的问题,提出结合Pix2Pix生成对抗网络的灰度图像着色方法......
可视化图像关键特征区域是计算机视觉一个重要而需要深入研究的问题.图像关键特征区域可视化的技术已经在弱监督定位和理解数据隐......
螺栓缺陷非常容易引起输电线路异常甚至故障,但大量的缺陷数据难以获得。将生成式对抗网络应用于缺陷螺栓图像的生成,针对生成过程......
通常情形下,现有的图像生成模型都采用单次前向传播的方式生成图像,但实际中,画家通常是反复修改后才完成一幅画作的;生成对抗模型......
数字图像复原的研究一直以来是图像处理领域的热门研究方向之一,由于其优越的视觉直观性、强大的信息包含性等,无论在社会工业或者......
图像修复是一种常见的图像编辑操作,其目的是用新生成的内容填充图像中的缺失或遮蔽的区域。新生成的内容既可以与原图像一样精确,......
图像分辨率是衡量遥感图像质量的重要指标,受限于成像设备和传输条件,传统遥感图像的清晰度难以保证,针对上述问题,提出了一种基于......