溶解气体分析(DGA)相关论文
变压器故障诊断研究需要较高精度的神经网络算法,在故障诊断时需要通过训练信息来获得最优决策。由于变压器所处环境以及监测特殊......
目前通过溶解气体分析(DGA)诊断油浸纸套管内部缺陷已经比较成熟。对于胶浸纸浸油式套管,浸泡胶浸纸材料的绝缘油分解产物与油浸纸......
为了充分挖掘油中溶解气体分析(DGA)数据隐藏的故障特征信息,提出了一种基于相对重构贡献(rRBC)的变压器故障诊断新方法。该方法首先利......
电力变压器运行的安全可靠性对于电网稳定有着关键影响。以油浸式变压器为例,考虑到变压器故障气体监测中存在的采集技术局限与完备......
基于变压器油中溶解气体分析(DGA)法是使用神经网络和灰色预测对变压器的故障进行预测的。主要是采集变压器油在各种情况下的数据,并......
油浸的电力变压器无论在正常老化还是故障运行时都会产生低分子烃类,CO,CO2等气体,这些气体将会溶解于油中.这样人们根据油中溶解......
针对以往神经网络常采用试凑法设计网络节点的缺陷,提出了一种自组织径向基函数(RBF)神经网络算法。该算法首先通过模糊C-均值(FCM......
传统的人工智能方法对变压器大量的不完备故障信息不能有效地分析,或在故障数据的离散化过程中由于区间分割不当而无法正确诊断故......
以油中特征气体组分比值为特征量的故障诊断是变压器内部故障诊断的重要方法,但实际应用中常出现"超码"和"缺码"问题,导致故障诊断......