邻域半径相关论文
针对已有的基于经典粗糙集理论的组合预测单项模型选择方法存在的问题与不足,引入邻域粗糙集理论加以改进.首先采用kmeans算法对决......
随着我国光伏制造业的迅速发展,多晶硅电池凭借其较高的性价比一直占据着光伏市场的主导地位。多晶硅的少子寿命值是保证多晶硅电......
针对二分K-均值算法由于随机选取初始中心及人为定义聚类数而造成的聚类结果不稳定问题,提出了基于密度和中心指标的Canopy二分K-......
摘要:K-means算法从样本集随机选取初始聚类中心导致聚类结果不稳定,且聚类性能易受奇异点影响。针对以上缺陷,文章定义基于相异度矩......
由于数值预报误差以及降水本身存在自然变率的不确定性,会导致定量降水预报结果存在不确定性,如何减小模式定量降水预报误差获得了......
在多晶硅铸锭配料质量分析中,针对邻域粗糙集-支持向量机(NRS-SVM)模型在处理多晶硅铸锭配料的连续型数据中邻域半径δ和SVM参数的......
聚类分析是数据挖掘的功能之一,是在训练数据不提供类标号的情况下按照最大化类内对象间的相似性、最小化不同类对象之间的相似性......
针对现有Memetic算法收敛速度慢、容易陷入局部极值等不足,提出一种基于改进粒子群优化和模拟退火算法的Memetic算法(简称为PMemet......
在城市土地利用规划中,利用自主体模型分析不同情景的影响及土地利用的备选方案具有重要的意义。考虑研究区域周围环境为确定型和......
采用Greenberg—Hasting元胞自动机模型,在零流边界条件下计算机数值模拟研究激发介质中行波的性质。结果表明,行波波速随邻域半径增......
针对传统近邻传播聚类算法(affinity propagation clustering algorithm,AP)处理特征复杂数据时聚类准确率较低的问题,提出一种基于......
针对传统聚类算法对动态数据集的处理能力较低,且加入新增数据后导致原始聚类结果不再可靠,以及造成算法效率低下和计算资源浪费等......
为提升欠定盲源分离问题中混合矩阵的估计精度,在噪声环境下基于密度的空间聚类(density-based spatial clustering of applicatio......
降水邻域集合概率法是处理高分辨率降水集合预报不确定性的一种新方法。利用2017年5~7月GRAPES(Global and Regional Assimilation......
在激光雷达障碍物检测中,由于数据密度分布不均匀,传统DBSCAN聚类算法无法同时对近距离和远距离目标实现良好聚类,容易导致漏检和......
在快速点特征直方图(FPFH)的特征计算过程中,需要人工多次选择邻域半径,计算过程复杂且效率较低。针对该问题,提出基于弧长密度的......
基因芯片数据具有维数高、样本少、高冗余的特点,以基因芯片数据进行特征选择及分类处理为研究对象。粗糙集理论能很好地消除冗余......
邻域粗糙集是粗糙集理论中一种处理数值型数据的重要模型,而规则提取是数据挖掘中最重要和最关键的环节,由于数值型数据取值连续,......
通过用Greenberg-Hasting元胞自动机模型的邻域半径和激发阈值的增大来模拟心脏老化,用邻域半径交替变化代替心脏收缩与舒张,数值......
随着全球卫星导航系统的广泛应用,基于卫星导航信号的欺骗干扰因其播发隐蔽性强、实施成本低、攻击危害性大等特点而受到越来越多......
在使用点云FPFH(Fast Point Feature Histograms)特征进行三维物体识别或配准时,人为主观调整邻域半径计算FPFH特征描述符具有随意......
目前,邻域多粒度粗糙集模型广泛采用的距离函数闵可夫斯基距离存在着一定的局限性,通过引入兰氏距离作为距离函数,重构了邻域半径......
随着科技的不断发展,数据挖掘成为当下帮助用户从大量的数据中提取出有效信息的重要手段,与此同时,作为数据挖掘中重要分支的聚类......