6-二氨基-3相关论文
为了研究晶体形态对炸药物化性能、应用方式和应用效果的影响,采用溶剂-非溶剂结晶法,分别以二甲亚砜(DMSO)为溶剂、乙酸乙酯为非......
本文报道了一种以五氧化二氮N2O5为硝化剂合成LLM-105的改良方法.该方法将硝化率提高到了75%,并且将总产率提高到了70%.为了研究合成......
为了研究2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)及其复合物的爆炸性能,拓展其在石油射孔、低易损炸药等相关军民领域的应用,......
合成了一种2,6-二氨基-3,5-二硝基吡嗪-1-氧化物(LLM-105)的含能配合物[Cu3(C4H2N6O5)3(H2O)3]·5NMP,并通过红外、元素分析、差示......
以2,6-二乙酰氨基吡啶-1-氧化物(DAPO)为原料,在N,N,N-三甲基-N-丙磺酸基-硫酸氢铵(TMPSHSO_4)催化条件下,采用N_2O_5/有机溶剂硝......
制备了1-磺酸丙基-3-甲基咪唑硫酸氢盐[MIMPS][HSO4]离子液体,以[MIMPS][HSO4]作为催化剂,应用于N2O5/有机溶剂硝化2,6-二乙酰氨基......
2,6-二氨基-3,5-二氟吡啶由2,3,5,6-四氟吡啶为起始物料,经二次取代一次脱保护等步骤制得。结果得到了淡黄色的目标化合物,摩尔收......
富氮杂环化合物被认为是理想的高威力含能材料,因为这些化合物大多具有高的分子密度、低易损性和正的生成焓。2,6-二氨基.3,5-二硝基吡......
以2,6-二氯吡嗪为原料,经亲核取代、混酸硝化和氨水处理获得2,6-二氨基-3,5-二硝基吡嗪。2,6-二氨基-3,5-二硝基吡嗪与次氯酸钠进一步......
研究了液晶高分子聚[2,5.二羟基-1,4-苯撑吡啶并二咪唑](PIPD)的2个单体2,5-二羟基对苯二甲酸(DHTA)和2,3,5,6-四氨基吡啶(TAP)盐酸盐的制备与提......
以2,6-二甲氧基吡嗪为原料,在3种不同硝化体系(包括混酸体系、发烟硫酸一硝酸体系、发烟硫酸一硝酸钾体系)下,研究了2,6-二甲氧基-3,5-二......
为了分析炸药中主成分2,6-二氨基-3,5-二硝基吡啶-1氧化物(ANPyO)和主要杂质2,6-二氨基-3,5-二硝基吡啶(ANPy)的纯度,建立了高效液......
制备了2,6-二氨基-3,5-二硝基吡嗪(ANPZ)纯度标准物质,采用红外(IR)、质谱(MS)、核磁共振(NMR)技术对其进行了结构表征。并使用1H,......
为了获得性能优良的高能复合材料,采用机械球磨方法制备了亚微米LLM-105和LLM-105/GO复合含能材料。对样品的微观形貌及结构等进行......
为了研究LLM-105(2,6-二氨基-3,5-二硝基吡嗪-1-氧化物)与过渡金属Cu和Co配合物的热分解特性及其相容性,合成了LLM-105与Cu(Ⅱ)和Co(Ⅲ)......
在升温速率分别为2.5、5、10、20K/min条件下对2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)及其黏结炸药进行了TG实验,根据实验结果讨论了......
按照文献方法,制备了2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)Ni(II)和Cu(II)两种含能配合物,用激光粒度测试仪及GJB772A97法测试了......
采用溶液-水悬浮-蒸馏法,分别以丁腈橡胶(NBR-26)、氟橡胶2311和2603为黏结剂,2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)和RDX为主体炸......
以ANPyO、Zn(CH3COO)2·2H2O和DMSO作原料,通过溶液法合成了含能配合物Zn4(C4N6O5H2)4(DMSO)4,采用傅立叶变换红外光谱、元素分析、Ⅺ......
为解决2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)难以用常规方法精制的难题,以铜盐、二甲基亚砜、硫酸和水为原料,通过ANPyO铜配合......
为了研究2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)基高聚物黏结炸药(PBX)的爆炸性能,拓展其在石油射孔、低易损炸药等相关军民......
为了研究在真空和溶剂二甲基亚砜(DMSO)条件下,1-氧-2,6-二氨基-3,5-二硝基吡嗪(LLM-105)的晶体生长形貌,采用分子动力学模拟方法构建......
为解决低感高能炸药用于冲击片雷管时起爆可靠性和长贮起爆可靠性的矛盾,防止超细粒子在长贮中发生团聚是关键。叙述了一种海胆状L......
分别制备了以2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)为基,加入氟橡胶F2311、氟橡胶F2603。及其两种混合物黏结剂和增塑剂组成的三种耐......
采用溶液-水悬浮-蒸馏法,以氟橡胶F2311和丁腈橡胶(NBR)包覆2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO),利用傅里叶变换红外光谱(FTIR)......
以氨水为胺化剂,KMnO4为氧化剂,在不同反应条件下实现2,6-二氨基-3,5-二硝基吡啶(ANPy)和2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)4......
为分析新型高能钝感炸药2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)的射流冲击感度,在口径为56 mm的聚能装药和炸高为80 mm条件下,......
合成了一种2,6-二氨基-3,5-二硝基吡嗪-1-氧化物(LLM-105)的含能配合物[Cu3(C4H2N6O5)3(H2O)3]·5NMP,并通过红外、元素分析、差示扫......
研究了2,6-二氨基-3,5-二硝基吡啶-1-氧化物( ANPyO)经酰化、重结晶和还原的新精制工艺,考察了精制工艺条件对ANPyO纯度、粒径分布、机......
以纳米级2,6-二氨基-3,5-二硝基吡嗪-1-氧化物(LLM-105)为原料,采用溶剂诱导自组装法制备了横截面为矩形的LLM-105微米棒,并将制备的......
采用密闭爆发器实验和靶线法实验测试了2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)的Fe(Ⅲ)和Co(Ⅲ) 配合物作为燃烧催化剂的可行性。结......
为改善2,6-二氨基-3,5-二硝基吡嗪-1-氧化物(LLM-105)的晶体形貌,控制LLM-105的晶体粒度,利用Crystal SCAN多通道结晶仪,采用浊度法......
以2,6-二乙酰氨基吡啶-1-氧化物(DAPO)为原料,在Ⅳ,Ⅳ,Ⅳ-三甲基-N-丙磺酸基-硫酸氢铵(TMPSHSO4)催化条件下,采用N2O5/有机溶剂硝化2,6-二乙酰......
为考察2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)的热稳定性,用绝热加速量热仪测定了 ANPyO 的绝热分解过程,获得了分解的温度、压力、......
制备了1-磺酸丙基-3-甲基咪唑硫酸氢盐[MIMPS][HSO4]离子液体,以[MIMPS][HSO4]作为催化剂,应用于N2O5/有机溶剂硝化2,6-二乙酰氨基吡嗪......
为了研究2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)对奥克托今(HMX)机械感度的影响,利用结晶包覆法制备了ANPyO/HMX复合物,并与混合......
2,6-二氨基-3,5-二硝基吡嗪-1-氧化物(LLM-105)是性能优异的耐热炸药,其晶体形状对安全及加工性能有较大影响,重结晶溶剂和方法直接......
研究了ANPyO与LLM-105混晶及其造型粉的性能和应用。以二甲基甲酰胺( DMF)为溶剂,采用重结晶法制备了ANPyO/LLM-105混晶,通过扫描电镜......
研究了2,6-二乙酰氨基吡嗪-1-氧化物在硝硫混酸和发烟硝酸/酸性离子液体中的硝化反应。在混酸硝化体系中,考察了混酸硝化剂类型对产物......
随着时代的发展,国际环境越来越复杂,对于冲击片雷管的要求也越来越高。采用高能量、高安全性能、对冲击片更敏感的始发药是发展新......
为了拓展2,6-二氨基-3,5-二硝基-吡嗪-1-氧(ANPZO)炸药的应用范围,采用重结晶和气动喷雾细化方法制备了立方体状、棒状和超细化球形三......
高聚物与2,6-二氨基-3,5-二硝基吡嗪-1-氧化物(LLM-105)的界面相互作用直接影响LLM-105的表面包覆效果,在原子分子层次的作用模式......
为了研究不同溶剂精制的2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)的性能,分别以三氟乙酸(CF3COOH)、二甲基亚砜(DMSO)和N,N-二甲基甲酰胺(D......
为探讨溶剂对炸药晶体形貌的影响机制和溶剂的选择依据,采用附着能(AE)模型预测2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)在真空的晶体形......
为了制备高纯度与高收率的2,3,5,6-四氨基吡啶/2-羟基对苯二甲酸复合盐(TH盐),通过以2,6-二氨基-3,5二硝基吡啶(DADNP)为原料催化加氢还......
为了研究2,6-二氨基-3,5-二硝基吡嗪-1-氧化物(LLM-105)的结晶成核过程,利用CrystlScan多通道结晶仪测量了不同过饱和度比下LLM-10......
纳米炸药具有独特的性能优势而受到了广泛关注,但是对该类材料毒性认识的缺乏会限制其工业化应用。探讨了三种典型纳米级炸药,即六......
以亚氨基二乙腈为起始原料,经亚硝化、环合、硝化、还原4步反应得到2,3,5,6-四氨基吡嗪(TAPA),其结构经NMR、IR、ESI-MS确证,总产......
为了研究2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)基高聚物黏结炸药(PBX)的热安全性,分别以氟橡胶F2311和丁晴橡胶NBR-26为主体......