Ε-不敏感损失函数相关论文
针对极大熵聚类算法MEC(maximum entropy clustering)对例外点(outliers)较敏感和不能标识例外点的缺陷,提出了一种改进的极大熵聚......
传统径向基函数(radial basis function,RBF)神经网络模型在处理噪声环境下的数据时,会因缺乏去除噪音特征的机制而使得受训模型的泛......
针对模糊聚类神经网络FCNN(fuzzy clustering neural network)对例外点(outliers)敏感的缺陷,通过引入Vapnik's ε-不敏感损失......
为支持向量回归机提供了一个新的光滑函数,即运用三次样条函数和复合函数的方法,得到一种新的光滑支持向量回归机——三次样条光滑......
提出了运用SVM机器学习方法进行故障过程趋势预测的方法,并设计了一个实用的SVM回归算法对“Tennessee Eastman”工厂的实际数据进......
机器学习主要是用来分析处理数据,挖掘数据背后所潜在的相关信息.大数据时代,如何准确快速地挖掘信息背后的关系已成为热点.支持向......
讨论了线性v-支持向量回归机中参数v的意义,并给出了严格的理论证明。利用v-支持向量回归机中ε-不敏感损失函数及参数v的意义,提......
光滑函数能将不光滑模型变为光滑模型,改善支持向量机的回归性能和效率.Lee 等人用一个光滑函数逼近ε-不敏感损失函数的平方,提出......
ε-不敏感的光滑支持向量回归机采用快速的迭代方法进行求解,使回归性能及效率得到了提高,但并没有考虑该回归机的收敛性。针对该......
2008年熊金志等人提出了一种求光滑函数的方法,就理论而言可求得ε-不敏感支持向量回归机的无穷个光滑函数,但该方法每次都需要对光......