加权状态融合相关论文
在许多实际应用中,为了获得精度更高的系统状态估值器,多传感器最优信息融合Kalman滤波理论和方法被广泛应用。但经典Kalman滤波只适......
对于带不同局部动态模型和多传感器的的线性离散时变随机控制系统,应用Kalman滤波方法,基于Riccati方程,根据按矩阵加权、按对角阵加......
对多模型多传感器线性离散定常随机系统,应用现代时间序列分析方法,基于自回归滑动平均(ARMA)新息模型和白噪声估计理论,根据按矩阵......
对于带多传感器的Y-可观广义线性离散随机系统,通过状态线性变换,将其化为两个降阶的非广义多传感器子系统。应用Kalman滤波方法和白......