均匀效应相关论文
对于非平衡聚类问题,传统K-均值聚类方法容易将分布在较大区域类中的样本错误划分到小区域类别当中,即存在聚类结果的均匀效应.针......
摘 要: K-means型算法在处理类不平衡数据时趋向于形成大小相同的簇,是“均匀效应”。针对这一问题诸多研究者提出了不同的聚类算法,......
针对传统K-means型算法的"均匀效应"问题,提出一种基于概率模型的聚类算法。首先,提出一个描述非均匀数据簇的高斯混合分布模型,该......
针对经典K–means算法对不均衡数据进行聚类时产生的"均匀效应"问题,提出一种基于近邻的不均衡数据聚类算法(Clustering algorithm......
聚类学习是机器学习的一个重要研究内容,被广泛应用于金融欺诈、医疗诊断、图像处理、信息检索和生物信息学等领域.目前,不同类型......