时变滤波经验模态分解相关论文
为描述短时交通量数据中隐藏的非线性与非平稳特性,提高短时交通量的预测精度,进而更好地构建智能交通平台,提出了一种基于时变滤......
为了有效提高非平稳非线性径流序列的预测精度,采用具有自适应序列特征的时变滤波经验模态分解(TVF-EMD)与长短期记忆神经网络(LST......
针对时变滤波经验模态分解(TVF-EMD)方法的不足之处,将样本熵作为适应度函数,采用灰狼优化(GWO)算法对带宽阈值和B样条阶数核心参......
期刊
时变滤波经验模态分解(TVFEMD)的性能在很大程度上取决于其参数(即带宽闯值和B样条阶数)的选取。在应用TVFEMD诊断轴承故障时,参数......
汽轮机、压缩机、燃气轮机等旋转机械是工业生产中常见的设备类型,在工业领域具有重要的应用。研究有效的方法监测设备的健康状况,......
为实现高精度的短期风速预测,提出一种基于混合粒子群算法和多分位鲁棒极限学习机的短期风速预测方法。在信号处理阶段,利用时变滤......
音质(Timbre)是音乐感知和言语识别的重要线索。传统音质分析方法无法同时获取理想的时间分辨率和频域分辨率,对音频的非平稳特性......
回 回 产卜爹仇贱回——回 日E回。”。回祖 一回“。回干 肉果幻中 N_。NH lP7-ewwe--一”$ MN。W;- __._——————》 砧叫]们......
针对经验模态分解(empirical mode decomposition,EMD)由于模态混叠现象难以有效提取轴承故障特征的问题,提出了一种基于时变滤波......
期刊