高维协变量相关论文
纵向数据(集团数据或面板数据),是对同一个个体进行多次观察,所得数据是相关的,不同个体观测所得的数据是独立的.广义线性模型是经典......
广义估计方程(GEE)是分析纵向数据的常用方法.Balan,Schiopu-Kratina(2005)研究了协变量维数固定,GEE估计的渐近正态性.WANG(2011)......
广义估计方程(GEE)是分析纵向数据下响应变量是离散的或非负的回归问题常用方法.本文研究了高维GEE的变量选择,在更弱的条件下证明......
随着科学技术的迅猛的发展,现代社会已经进入到大数据时代,我们也被各式各样数量规模庞大的高维数据所包围,尤其是在生物、医药、金融......
研究高维线性模型中的经验似然推断.当协变量的维数随样本量增加时,常规的经验似然推断失效.在适当的正则条件下,对修正的经验似然......
研究了协变量维数趋于无穷的复合次序Logisti回归纵向数据模型.首先在响应变量为k个有序“状态”之一时,给出了该模型下的广义估计......
本文运用两阶段估计程序给出了协变量调整的精度矩阵估计.首先,运用联合l1惩罚方法确定影响均值的相关协变量.然后,将估计出的回归......
为了降低成本、提高研究效率,对与时间相依的数据,有偏抽样方法是广泛应用的基础抽样方法.在建模过程中,它可以从参数的先验信息中......
2012年Wang等在较弱条件下证明了经典Logit模型惩罚广义估计方程估计的渐近性质。两阶段Logit模型是经典Logit模型的推广,可以处理......