【摘 要】
:
PIN-PMN-PT由于具有优异的压电、介电性能,以及较高的Trt 而受到广泛重视,并被称为第二代弛豫铁电晶体[1-3]。本论文以三方相19PIN-49PMN-32PT三元系弛豫铁电单晶为研究对
【出 处】
:
第17届全国晶体生长与材料学术会议
论文部分内容阅读
PIN-PMN-PT由于具有优异的压电、介电性能,以及较高的Trt 而受到广泛重视,并被称为第二代弛豫铁电晶体[1-3]。本论文以三方相19PIN-49PMN-32PT三元系弛豫铁电单晶为研究对象,系统地研究了温度对[001]和[011]取向的晶体相结构和性能的影响。
其他文献
采用提拉法生长Ca2Al2SiO7(CAS)晶体,使用排水法测得晶体密度为3.059g·cm-3,XRF分析发现各组分有效分凝系数接近于1,不同生长阶段的晶体组分均匀,HRXRD结果表明CAS晶体
Pb(Mg1/3Nb2/3)-xPbTiO3(PMN-xPT)单晶因其优异的压电、机电耦合性能而被广泛应用和研究。目前为止,对PMN-xPT体系的研究多集中在三方相和准同型相界(MPB)组分附近,针对四
以超低含量(小于0.5at.%)的LiBiO3(LB)为助熔剂、采用传统的陶瓷工艺(无籽固相生长技术)制备出较大的铌酸钾钠(K0.5Na0.5NbO3,KNN)单晶,其生长工艺简单、易重复.
溴化铈(CeBr3)晶体是继铈离子激活的卤化氯化镧(铈)(LaCl3:Ce)和溴化镧(铈)(LaBr3:Ce)之后发现发现一种新型无机闪烁晶体,其兼具高光输出、快的时间响应、好的时间分辨和低本底等特性,
氟化镁(分子式:MgF2)晶体在紫外、可见和近红外波段具有良好的透过性能、荧光辐射小、双折射等性能,是紫外光电探测器、紫外激光器和紫外光学系统的理想材料。
本文通过光学浮区法生长了Yb3+离子掺杂的Lu1-xYxAG混晶.生长采用[111]方向的YAG单晶为籽晶,在Ar保护气氛中进行,生长速度为6-10mm/min.所得晶体直径约5mm,抛光后的晶片
氢化物气相外延法(HVPE)是最有前景的制备自支撑氮化镓(GaN)的方法,具有生长速度快,成本低,生长的GaN质量好等优点。目前,HVPE法生长GaN主要采用异质衬底,如Al2O3、SiC和
锆钛锡酸铅镧(PLZST)反铁电材料,具有低电滞损耗,巨大的电致应变效应和短的响应时间的特点,使其在微位移致动器、智能材料等领域有广阔的应用前景[1]。
(K,Na)NbO3(KNN)基压电材料因其较高的压电性能和居里温度而备受关注。本课题组前期工作中成功利用顶部籽晶提拉法生长出了不同组分的KNN基单晶,如(K,Na)(Nb,Ta)O3(KNNT)
随着BaF2光学晶体在军事领域以及国民经济建设中的应用,对于BaF2光学晶体的要求越来越高,BaF2光学晶体正向着优质大口径(>Φ200mm)、高单晶率的趋势发展。