论文部分内容阅读
由于对多类问题的高维数据无法直接观察其聚类和分布特性,该文采用神经网络法实现自适应主元特征提取(APEX)、以压缩特征空间的维数,并保持足够的信息来鉴别事物之间的类别,它可有效地提取信号的主要特征、抑制噪声。研究人员将高维数据压缩影射到2或3维,从而实现特征数据的可视性分析,显示物体对象间的类似程度和关系结构,并采用高阶果表明高阶函数神经网络较BP网络分类能力强,训练速度快。