大批量激光拼焊板生产技术综述

来源 :2009年汽车用钢生产及应用技术国际研讨会 | 被引量 : 0次 | 上传用户:yuanli1988
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  钢板拼焊从20世纪80年代末就已被使用,已发展成为目前甚至未来一段时间内,车身设计中不可缺少的技术。十几年中,拼焊板设计已从非常简单的两板组合向非常复杂的设计发展,以面对减轻重量,提高工艺性能和降低成本的持续挑战。经过一段时间,发展了不同的激光焊接生产概念,允许在高度竞争的市场环境下,以一定成本、质量和灵活性制造高品质产品。本文从制定激光焊接设备的主要需求开始,并提出了生产线的核心设备。然后讨论了物流和处理技术,以明确生产效率和灵活性方面的特性。以汽车工业需求的典型板料设计为例,对操作周期,制造参数,也就是成本因素进行分析。文章最后展示了焊接质量控制过程。
其他文献
采用盐浴退火方法研究了退火温度对析出强化型高铌IF钢显微组织和力学性能的影响,并与传统高强度IF钢进行对比.析出强化型高铌IF钢在790~ 850℃之间退火时,组织为扁平状铁素体组织,其晶粒尺寸在5.4 ~6.2 μm之间;870℃退火时,组织中出现了一定量贝氏体型铁素体.此钢在退火时存在一临界温度,当低于临界温度退火时,高铌IF钢呈现比较稳定的力学性能,屈强比比传统IF钢略低;高于临界温度退火,
本文对75%冷轧变形、1mm厚的高强度IF钢进行再结晶退火处理,用光学显微镜(OM)、扫描电镜(SEM)和场发射高分辨透射电镜(HRTEM)等技术,研究了不同退火时间对IF钢的微观组织、晶粒尺寸、重位晶界特征(CSL)及磷的晶界偏聚的影响。结果表明,实验钢在810℃分别保温180 s、360 s和600s均发生了再结晶,随保温时间延长,晶粒尺寸增大。退火实验钢中含有大量Σ3晶界,此外还有Σ7、Σ9
在实验室试制了1000 MPa级连续退火双相钢,利用光学显微镜、SEM、TEM以及拉伸试验对双相钢的微观组织和力学性能进行检测.结果表明,保温温度为830℃,保温时间60s,快冷至过时效温度240℃,过时效时间240 s,可以得到屈服强度为535 MPa,抗拉强度为1145MPa,屈强比为0.47,伸长率为13%综合性能较好的高强双相钢;抗拉强度随着过时效温度的升高呈下降趋势,屈服强度、伸长率和屈
本论文研究了780 MPa级冷轧热镀锌双相钢的微观组织、性能和制备工艺。实验结果表明:热镀锌双相钢的显微组织为铁素体+马氏体组织,马氏体呈岛状均匀地分布在铁素体基体上。当退火温度为820℃,保温时间为100 s时,热镀锌双相钢的抗拉强度可以达到800 MPa,伸长率可以达到15%,综合力学性能良好。随着退火温度的升高,马氏体体积分数降低,屈服强度和抗拉强度也随之降低,伸长率则以退火温度为820℃时
利用SEM、EDS以及XRD等设备,研究了冷轧汽车板的表面化学成分、表面涂油状况、表面粗糙度等表面状态对冷轧汽车板磷化膜质量的影响,同时对磷化膜的“磷比”与磷化膜中锌元素含量之间的关系进行了研究。研究结果表明:碳含量高、铝含量高、表面涂油量大不利于形成细小、均匀的磷化膜,而提高镁元素含量、使冷轧板表面粗化有利于改善磷化膜的质量;随着磷化膜中锌元素含量的升高,磷化膜的“磷比”值呈现下降的趋势。
本文分析了相变塑性钢的应用性能特点。采用热力学和动力学方法探索了研发可焊可热镀锌相变塑性钢的产业化途径。指出了国外以铝代硅生产相变塑性钢的弊端,为了适应国内钢厂生产,提出以磷代硅以提高钢的可镀性。
金属成形领域中数值模拟应用的增加,有助于工程技术人员一个接一个地解决问题去生产高质量的成形产品,减少所需时间。模拟结果的精度是保证工具和产品设计的基础。影响最终模拟结果的因素很多,如一个合适的屈服准则。数值模拟的广泛应用,促进了满足工业需要的高精度模拟软件的开发。如今,成形模拟的工业目标可归纳为三类:缩短时间,降低成本,提高产品质量。  许多研究工作在材料、屈服准则和塑性变形、工艺参数及其优化、相
本文进行了一种含高铝的600 MPa级冷轧双相钢的试验研究,采用Gleeble -2000、连续退火试验装置以及扫描电镜和透射电镜对其连续冷却相变温度、退火工艺及显微组织进行了分析研究。结果表明:高铝双相钢的连续冷却相变温度为Ac3=930℃,Ac(1)=770℃;其退火组织为典型的铁素体+岛状马氏体双相组织,马氏体均匀分布在铁素体周围;透射电镜分析发现,马氏体周围的铁素体基体中存在高密度自由位错
在全球的汽车和航空工业,金属板材液压成形获得了越来越多的关注.这种非传统的金属成形工艺有很多优势,在实际(生产)中能很好地满足工业生产的需求,例如:板材成形性的改良,优良的表面质量,高尺寸精度,并且相对于传统工艺减少了回弹量.而且,可简化工艺链同时显著降低成本.在本文中,作者采用数字模拟和试验,针对不同几何形状、工艺参数和厚度的最大液压成形深度(进行)分析.分析材料( FeP(0)4),是一种工业
高强钢板在冲压成形时的回弹是成形工艺设计和控制中影响成形件尺寸精度的关键问题。采用数值模拟技术对板料的成形和回弹规律进行预测,并对影响成形件形状和尺寸精度的因素进行分析,可以为优化板材成形工艺提供参考,是高强钢板成形技术的重要课题之一。本文分析了回弹机理以及S形件的成形特点,对高强钢板S形件的拉伸以及回弹过程进行了有限元分析,得到了不同压边力和拉延筋形状对于S形件回弹的影响规律。