基于改进的Logistic算子和自适应变异算子的多目标进化算法的研究

来源 :东北师范大学 | 被引量 : 0次 | 上传用户:zml19881209
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在实际生活和工程实践中,多个待优化目标经常同时出现,大量此类问题采用进化算法来求解,因此多目标进化算法的研究有着重要的理论意义和实践意义,也成为了近些年研究的热点。然而在解决具有较小或非连续可行域的问题中,大多数算法由于不可行域的阻碍无法收敛到Pareto前沿。同时,固定的变异参数使得优秀解和劣质解具有相同的变异概率,无法满足算法在进化过程中对保存优秀解,尽可能地改善劣质解以提高算法收敛性与多样性的要求。为了解决以上问题,本文做出以下几点创新及工作:1.为了帮助算法跨越不可行域并收敛到较小的可行域中,提出了基于改进的Logistic算子的多目标进化算法LCMO。该算法使用协同进化框架,在改进框架的优化器算法时,引入改进的Logistic混沌映射到环境选择中,改进后的Logistic算子改善了原来算子迭代点分布不均的问题,能够改变解个体在空间中的分布,从而帮助种群跨越不可行域提高算法的收敛性。同时算法还采用二次排序法改进非支配排序操作以达到进一步细化非支配解等级的目的。将LCMO与4个先进的MOEA进行对比实验,结果表明算法LCMO在可行域较小的问题上表现突出,具有较好的多样性和收敛性。2.为了使进化过程中个体的变异概率能够随着进化自适应地改变,提出基于自适应变异算子的多目标进化算法AKn EA。该算法在Kn EA算法的基础上,引入自适应变异概率,在环境选择阶段,通过比较解个体的适应度值和当前种群的最大适应度值间的关系,计算出该个体在下一次迭代中的变异概率。这一参数能够根据解个体自身的情况和种群的进化程度自适应地调节变异操作。将AKn EA算法与4个先进的MOEA进行横向对比实验,AKn EA算法在多数问题上获得了更好的结果;通过AKn EA与Kn EA的对比实验可以看出改进后的算法具有更好的多样性和收敛性。综合来看,自适应变异算子的引入提高了算法的性能。3.改进原有的选址模型——P median模型,且利用的改进的算法求解模型并展示求解结果。
其他文献
最小顶点覆盖问题(MVC)是组合优化领域的一类常见问题,在这类问题中,部分顶点覆盖问题(PVC)是其中一个热门研究方向。我们生活中很多问题都可以转化为PVC问题,比如监控设备安装问题、高校教师排课系统、网络优化问题、线路规划问题等。PVC问题属于NP难问题,也就是说随着数据规模的增大,问题的求解时间往往呈指数级增长,这种情况下要求出问题的精确解所需要的时间开销是难以忍受的,因此近似算法成为解决PV
翻译后修饰(PTM)是指在蛋白质生物合成后对蛋白质进行共价修饰,通常是酶修饰。蛋白质翻译后修饰在蛋白质的加工、成熟以及改变蛋白质的物理和化学性质中起着非常重要的作用。蛋白质亚硝基化是一种重要的、可逆的蛋白质翻译后修饰,涉及一系列生物过程。此外,越来越多的人类疾病被发现与亚硝基化异常密切相关。因此,识别和理解亚硝基化对于细胞生物学的研究、疾病治疗十分重要。亚硝基化位点的准确预测不仅有助于揭示亚硝基化
随着在线医疗服务平台的发展,积累了大量的电子健康记录,使得患者可以从丰富的医疗信息资源中获得更好的医疗服务。然而,患者很难从复杂的信息资源中找到最适合医治自己疾病的医生。这些医疗数据中存在许多无法察觉但是又十分重要的联系,所以发现数据中内部关联对于疾病预测及医生推荐问题具有一定的研究价值。有效分析和挖掘电子健康记录对患者及时、准确获得治疗也具有重要意义。传统的医疗诊断方式往往凭借医生的专业知识和实
学位
蛋白质结构预测的研究对了解蛋白质功能、促进蛋白质工程以及药物的研发具有重要意义。而跨膜蛋白则是蛋白质中结构比较特殊的一类蛋白,其通过特殊的跨膜结构穿透磷脂双分子层长期稳定地固定在生物膜上,是生物膜功能的主要承担者。因此,跨膜蛋白结构的研究具有非常重要的生物学和医学意义。根据跨膜区结构的不同,跨膜蛋白可以分为α螺旋和β桶状跨膜蛋白两大类。作为跨膜蛋白中重要一类的α螺旋跨膜蛋白,其结构的研究对于跨膜蛋
RNA与蛋白质的相互作用在许多重要的生物学过程中起着重要的作用。基于新一代测序技术的创新和发展过程,数以百计的RNA结合蛋白(RBP)及其相应的RNA被逐渐发现。通过对其生物学进程的总结和分析,使得在计算生物学方面,利用机器学习的方法对RNA-蛋白质相互作用进行大规模预测成为可能。到目前为止,在计算生物学领域的学者已经在此问题上探究和开发出了多种计算工具和方法,其中就包括深度学习模型,同时也利用基
在“互联网+”时代,随着信息量的不断扩增,人们的兴趣也变得多种多样,如何使人们在巨量的信息中快速准确地找到符合需求的信息就成为当下亟待解决的问题。推荐系统作为一种有效的信息过滤手段被广泛应用于工业界和学术界,因此对推荐系统的研究也成为最热门的课题。大多数推荐方法一般都采用深度学习与协同过滤相结合的方法,在一定程度上提高了推荐的性能,然而这些方法依然存在以下四个问题:(1)不能捕获用户动态变化的兴趣
光学字符识别(Optical Character Recognition,OCR)技术始于上个世纪六十年代中期。深度神经网络出现后,识别对象由印刷体字符发展为自然场景字符,目前基于深度学习的OCR已经成为机器视觉领域中的一个重要研究课题。随着中国制造2025的提出,推动我国的工业面向信息化发展,字符识别技术在工业环境中的应用受到了广泛关注。区别于高分辨率、高清晰度的文档字符图像,复杂的工业环境中字
物联网(Internet of things,IoT)的应用开发前景越发广阔,大量的智能环境可以连接到脑机接口(Brain Computer Interface,BCI)系统上。BCI系统是一种连接人类大脑与外部设备的实时通信系统,直接将大脑产生的信息转换成驱动外部设备的命令,取代人体或言语器官与外部世界进行通信。简而言之,BCI系统可以代替人体大脑周围神经和肌肉组织,实现人与外界环境的沟通。BC
本文研究内容是多维背包问题,多维背包问题的目标是在满足所有维度下的限制条件找出被选择的物品总价值最大的组合,它是NP难的组合优化问题,在计算上具有挑战性并且在生活中应用广泛,多维背包问题广泛存在于货物装载、削减库存、项目选择、资金预算、解决处理器和数据库在分布式计算机系统上的分配问题等方面。因此,求解多维背包问题具有重要的理论指导意义和实际应用价值。本文提出随机采样预处理的方法来求解多维背包问题,