论文部分内容阅读
丙酮-丁醇-乙醇(Acetone-Butanol-Ethanol,ABE)是一种新型潜在的发动机生物质代用燃料;与已有的传统生物质替代燃料相比,因其低成本可再生性质而得到越来越广泛的关注。目前,对ABE的应用研究尚处于起步阶段。ABE是否适合作为发动机的生物质代用燃料,还需要从燃用ABE混合燃料发动机的动力性、燃油经济性、排放特性以及循环变动特性等多个方面进行评价。论文以不同组分比例ABE的ABE/汽油混合燃料以及ABE与汽油不同掺混比例的ABE/汽油混合燃料为研究对象,通过试验研究和数值仿真的方法,对ABE/汽油混合燃料发动机的燃烧特性、排放特性、循环变动特性以及ABE/汽油混合燃料化学反应机理等进行了研究;研究工作对于ABE作为火花点火发动机代用燃料的可行性评估以及ABE/汽油混合燃料发动机的研究具有重要的学术意义和工程应用价值。根据火花点火发动机燃用ABE/汽油混合燃料燃烧及排放特性试验研究的需要,搭建了 ABE/汽油混合燃料发动机试验台架;确定了以气相色谱法作为发动机非常规污染物测试与分析的方法,以及以氢火焰离子化检测器和质谱仪作为发动机非常规污染物成分识别和污染物浓度检测的方法;对气相色谱仪输出结果进行了标定,得到了发动机非常规污染物成分的标定曲线及标定方程;确定并配制了试验用ABE/汽油混合燃料并制定了试验方案。通过试验研究方法,进行了 ABE组分比例和ABE/汽油掺混比例对火花点火发动机燃烧特性、燃油经济性、循环变动特性、常规和非常规污染物排放特性影响的研究。通过研究,得到了发动机不同负荷及不同混合气当量比时,发动机燃烧特性、燃油经济性、循环变动特性以及常规污染物和醛类、烯烃类、芳香烃类等非常规污染物排放特性随ABE组分比例及ABE/汽油掺混比例的变化规律。采用DRGEP-SA与CSP-QSSA相结合的多级机理简化方法及简化机理构建方法,得到了包含78种组分和312步反应的ABE/汽油混合燃料简化化学反应机理并进行了验证。验证结果表明,该简化机理可以比较准确预测ABE/汽油混合燃料燃烧过程中丙酮、丁醇、乙醇、正庚烷、异辛烷、甲苯、正庚烷及异辛烷等组分的燃烧滞燃期、层流火焰速度以及这些组分氧化过程中反应物、生成物和中间产物的浓度变化。利用构建的ABE/汽油混合燃料简化化学反应机理,分析了ABE/汽油混合燃料化学反应时各组分间的相互作用以及化学反应中间产物的生成和消耗路径。根据ABE燃料的性质及其在火花点火发动机中的燃烧特点,修正了 G方程燃烧模型中的层流火焰速度模型和湍流火焰速度模型;根据ABE/汽油混合燃料发动机燃烧过程数值仿真研究的需要,建立了针对ABE/汽油混合燃料发动机缸内燃烧及循环变动研究的发动机燃烧大涡模拟数值仿真模型。验证分析表明,ABE/汽油混合燃料发动机燃烧大涡模拟数值仿真模型可以比较准确地对ABE/汽油混合燃料发动机的燃烧过程及污染物排放进行预测。通过数值仿真方法,利用建立的ABE/汽油混合燃料发动机燃烧大涡模拟数值仿真模型,进行了 ABE/汽油混合燃料发动机缸内燃烧、污染物生成以及燃烧循环变动的研究,以及掺混ABE对火花点火发动机缸内燃烧、污染物生成、燃烧循环变动作用机理的研究。通过研究,得到了对ABE/汽油混合燃料发动机燃烧影响最大的活性自由基及其对缸内燃烧的作用机理,得到了对ABE/汽油混合燃料发动机污染物生成影响最大的中间产物及其对缸内污染物生成的作用机理,得到了对ABE/汽油混合燃料发动机燃烧循环变动影响最大的活性自由基及其对缸内燃烧循环变动的作用机理。图118幅,表14个,参考文献234篇。