论文部分内容阅读
诸如振动筛、振动给料机、振动成型机、捣固机、振动压路机、各类振动台、激振器等振动机械是各工业部门或科学试验的重要设备。这类机械是利用振动特性来满足生产中工艺过程和工作过程的要求。工作过程中,这些复杂的承载条件与长时间的连续工作,其主要结构的零部件始终承受着恶劣的交变载荷,设备结构的损伤是不可避免的。但是,就目前企业对振动筛的使用情况来看,国内产品的使用寿命远低于国外的同类产品。国外大型振动筛采用先进的设计技术和制造技术,生产出了性能优良的大型筛分机械,其无故障运行时间在3,000h以上,大修期在20,000h以上。而国内同类产品的相同技术指标则远低于上述指标。因此机器设备的运行可靠性和工作寿命就成为需要解决的关键问题。对于大型重载机械,这个问题尤其突出。如大型振动筛主要结构件的早期疲劳断裂,就始终是困绕业界的突出问题。采用先进的研发技术,使结构满足所承受的动态载荷以及合理的动态应力分布,是解决运行可靠性和工作寿命的有效方法。 目前静强度加运动学分析(或简化的动力学分析)的传统设计,大多是采用经验数据和安全系数的设计计算方法,不能准确揭示出结构内部动态应力分布状况,因此不能保证产品结构的设计合理性,直接影响产品的使用性能与寿命。 本文作者以大型振动筛为研究对象,利用先进的振动测试手段和动力学分析理论,将理论建模与实验建模相结合的动态设计方法完整地应用于大型振动机械动态设计过程。利用有限元分析技术,初步获得原型振动筛的模态参数和模态振型,利用这些参数,对设计结构进行初步修改,并作为物理试验模型的设计依据,同时也作为试验测点布置的主要参考。利用振动测试技术,进行多测点实验建模,获取结构的模态参数和模态振型;在对测试数据进行充分分析的基础上,获得振动位移场(间接获得应力场)及其它动态特征。这些动态参数可作为理论分析模型修 太原理工大学博士研究生学位论文正和结构动力学修改的基本依据。解决了传统静态设计方法存在的严重不足。 本研究课题在研究振动筛的工作原理的基础上,对筛面上物料的运动学及振动筛动力学进行了详细的分析研究。确定了原型振动筛的工艺参数和结构参数。 通过对振动筛损坏机理的研究,确定了振动筛结构件的材料选择原则以及适宜选作振动筛结构用材的金属材料种类。 本研究课题以30.24m2的大型振动筛作为动态设计的实例开展研究工作,同时采用1:3的几何相似模型,进行与振动筛动力学特性的物理模拟研究。有限元、边界元等动力学理论分析是建立在模型简化和假设的基础之上的,因此其分析结果应用于结构设计,其设计质量和设计精度不能完全满足研制高质量、高性能机械结构要求。而以先进振动测试技术为手段的实验模态分析,则能够得到结构的真实模态参数和振型。理论建模和实验建模的结合,可以充分发挥各自的优势,取长补短,以提高机械结构设计质量和设计水平。 实验建模的实验对象可以采用结构原型也可以是几何相似模型,如果存在以下的几种情况之一,应该考虑采用几何相似模型进行试验研究:新设备的开发、原型设备的研制成本过高、结构尺寸过大或过小,原型设备现场测量不可实现等。 本项研究采用有限元分析软件对振动筛原型及模型的动态特性进行了理论分析。研究结果表明,原型与模型具有确定的动力学相似特性。模态试验分析结果也同样使这一特性得到确认。动力学相似这一重要特性,是我们深入研究设计大型振动筛的基本条件。 使用16通道动态测试分析仪和模态分析软件对模型振动筛进行的模态试验表明,采用随机激励信号,只要激振力选择适当,能得到振动筛比较完整的模态参数和模态振型,可以作为有限元模型修正和结构动力学修改的依据。理论建模与实验建模完整的结合,将结构的动力学设计应用于大型复杂振动机械的产品设计,开辟了工业产品设计的新思路,在研究方法和研究手段上进行了创新性的工作。 对工业现场使用的设备采用工作模态分析和工作变形模态分析,对工作状态下的机电设备变形位移场(或应力场)分布研究进行了有益且有效的工作。 太原理工大学博士研究生学位论文 为了满足振动筛长寿命和高可靠性的要求,采用灵敏度分析技术,对振动筛进行了动力学修改,较好的完成了振动筛的动态设计过程。 隔振是振动筛设计的重要内容,隔振器的性能不仅关系到振动筛本身工作性能的好坏,同时也关系到设备振动对基础或构架的影响。好的隔振性能还能降低设备的噪声。本文对隔振器的性能进行了研究探讨。