【摘 要】
:
受到自然界中存在着种类丰富的天然分子马达的启发,研究者通过模仿成功制备了人造胶体马达。化学驱动胶体马达能够利用其表面上不对称分布的催化剂在胶体马达周围构建不对称场驱动胶体马达运动,其中气泡驱动机理是化学驱动马达中最典型的驱动机制。气泡驱动具有高效的能量利用效率,受溶液中电解质影响较小等优点,因此在生物医学、环境治理、检测等领域有着广泛的应用前景。目前,对可批量制备的、尺寸较小的气泡驱动空腔结构胶体
论文部分内容阅读
受到自然界中存在着种类丰富的天然分子马达的启发,研究者通过模仿成功制备了人造胶体马达。化学驱动胶体马达能够利用其表面上不对称分布的催化剂在胶体马达周围构建不对称场驱动胶体马达运动,其中气泡驱动机理是化学驱动马达中最典型的驱动机制。气泡驱动具有高效的能量利用效率,受溶液中电解质影响较小等优点,因此在生物医学、环境治理、检测等领域有着广泛的应用前景。目前,对可批量制备的、尺寸较小的气泡驱动空腔结构胶体马达报道较少。本文旨在构筑具有空腔结构、不对称性结构、亚微米尺寸、能够大批量制备的气泡驱动胶体马达,探究水热合成反应时间对烧瓶状胶体马达制备的影响及气泡驱动烧瓶状马达运动机理,研究了瓶颈长度对胶体马达运动行为的影响,为气泡驱动胶体马达的制备和应用提供新的方法和思路。使用抗坏血酸还原方法制备了表面具有微小突出结构类似树莓状的催化剂铂,利用真空灌注将树莓状的铂纳米粒子装载在水热合成法制备的烧瓶状胶体空腔内部。烧瓶状胶体马达具有烧瓶状外貌、内部具有空腔结构通过中空颈状结构与外界相连,表面电位带负电,具有良好的光致发光能力,催化剂铂在空腔中负载量约为17.73%,采用真空溅射方法制备了不同直径的Pt-Si O2阴阳型球状胶体马达,通过加入10%过氧化氢溶液验证了阴阳型球状胶体马达粒径小于5μm后,放置到过氧化氢溶液中不会产生氧气泡,而内腔直径550 nm的烧瓶状胶体马达能够在同等浓度的过氧化氢溶液中产生氧气泡,说明空腔的限域效应促进了催化反应产生的氧气分子聚集形成大氧气泡。研究了水热反应时间对烧瓶状胶体马达形貌和结构的影响。扫描电子显微镜、热重分析、透射电子显微镜和能谱分析的结果表明不同水热合成反应时长制备的烧瓶状胶体马达具有不同瓶颈长度,热重分析得出催化剂在三种烧瓶状胶体马达中装载量相同。采用实验和理论分析相结合方法系统地研究了燃料浓度和瓶颈长度形貌等因素对气泡驱动烧瓶状胶体马达驱动性能的影响。综上所述,本文基于软模板水热法可控制备气泡驱动烧瓶状胶体马达,实现了具有限制性空间结构、不对称结构和装载催化剂铂的烧瓶状胶体马达的大批量简易制备。并通过加入过氧化氢溶液观测到由于瓶颈长度不同气泡驱动烧瓶状胶体马达的运动行为、运动速度发生变化,分析了气泡驱动胶体马达运动机理。
其他文献
苦咸水淡化已经成为解决目前国内外淡水资源短缺以及提供清洁安全的生活、生产用水的有效途径之一。纳滤膜以其低运行成本和优越的截留性能,确立了它在苦咸水淡化领域中的重要地位。但是传统的薄膜复合(TFC)纳滤膜在渗透性和选择性之间存在的“权衡”效应,“权衡”效应的存在限制了纳滤膜的进一步发展。此外,纳滤膜还面临浓差极化和膜污染等问题,膜污染会引起渗透通量的衰减,缩短膜的使用寿命。因此,在不牺牲选择性的前提
半导体光催化技术,是一种以半导体材料为催化剂,利用太阳光能催化降解有机污染物、光解水制备H2和催化还原CO2制备CH4等清洁能源的新兴技术,在治理环境污染和解决能源短缺这两大问题上具有非常广阔的发展前景,受到人们的广泛关注。半导体光催化材料的性能高低,受材料的光吸收能力、光生载流子分离效率、传递效率、光生载流子氧化还原能力等多种因素影响。根据文献报道,掺杂过渡金属离子引入缺陷、构建Z型异质结是提升
碳化硼(B4C)具有密度低、熔点高、超高硬度、热电性能优异以及良好的中子吸收能力等特点,被广泛应用于核工业、磨料、军工、电子和工程结构件等领域。然而,碳化硼强共价键结合的特点,使B4C陶瓷具有难烧结、难致密和断裂韧性低等缺点,严重限制了B4C陶瓷在工程领域和军工领域的应用。为了解决上述问题,本文通过引入第二相的方法改善B4C的烧结性能,向B4C基体中引入铝(Al)或碳纳米管(CNTs)来制备碳化硼
金属有机骨架(MOFs)由于其具有孔道结构可调节、组装方式多样性、网络结构丰富、结构稳定等特性,而受到广泛关注。MOFs在气相催化、气体存储与分离、质子传导、生物成像、小分子传感等领域具有广泛的应用前景。近年来,以功能特性为导向,许多具有新颖结构的MOFs不断被获得,例如以荧光检测为导向,许多具有优异发光性能的MOFs已经被开发出来,并用来检测各种对环境和人体有害的小分子化合物、硝基爆炸物、阴阳离
SiC陶瓷材料具有密度低、强度高、硬度大、耐高温、导热快等诸多优点,在航空航天等领域中具有十分广阔的应用前景。但是SiC陶瓷材料断裂韧性较低以及常压烧结难致密等缺点极大的限制其在实际中的大规模化生产应用。而相比于其他增韧方式,颗粒增韧制备工艺简单,生产成本较低,更适用于大规模工业化生产。本文通过SiC陶瓷基体中引入SiC纳米颗粒来提高常压烧结SiC陶瓷的致密性和断裂韧性,并对SiC纳米颗粒的作用机
海洋蕴藏着丰富的能源,开发海洋资源是解决人口增长和资源枯竭的必由之路。随着海洋强国战略的提出,我国开发海洋的速度不断加快。水下无人有缆机器人(Remotely Operated Vehicle,ROV)凭借其良好的机动性和深水作业能力,日渐成为海洋结构物检测维修和水下救援中的重要工具。它可以代替潜水员执行水下复杂环境的探测和维修作业,同时可以深入海洋深处进行资源观测和勘探。水下钻孔作业是海洋结构物
工业化进程的加快造成了严峻的能源和环境问题,对人类健康产生严重的威胁。太阳光取之不尽用之不竭,具有环保、可持续等优点,得到了广泛的关注。而基于太阳光的光催化技术能够有效解决资源和能源问题。二氧化钛(TiO2)作为最早被发现的光催化材料,具有高储量、低毒性、高催化活性等优势,促进了光催化领域的发展。常见的TiO2以纳米颗粒的形式被利用,但要实现催化剂的循环利用,就要对催化剂进行固液分离。不但增加处理
人工智能、大数据等技术的发展对计算性能的要求逐步提高,然而,晶体管和存储单元的开发已经达到了微型化的上限。解决方式之一是利用能够在极化和磁化两种状态下进行信息存储的多铁材料,通过每一变量的正负调控以实现四种存储状态。但多铁材料数量少、磁电有序发生温度低等一系列问题阻碍了其在内存设备中的实际应用。近期,六甲基苯中CH3+和卤化铵(NH4X,X=Cl,Br,I)中NH4+周期性运动导致的磁有序被报道,
捕食者-食饵模型一直是生物数学领域中的热点研究模型之一,生物种群生存与灭绝条件的研究对生态学具有重要意义。本文研究两类随机Leslie-Gower捕食者-食饵模型的一系列动力学性质。绪论里介绍了Leslie-Gower捕食者-食饵模型的由来,以及学者们对一些确定性和随机Leslie-Gower模型的研究。本文借助了遍历不变概率测度的Lyapunov指数这一概念研究两类模型。第二章研究了一个具有Be
病毒感染寄主组织是通过其表面特定的蛋白与感染胞体外表的蛋白之间的互作来完成的,当寄主的组织被侵染后,病毒会使用寄主的化合物来完成基因组的复制、蛋白质的合成、新病毒颗粒的组装、释放等过程,所以预测病毒蛋白质-宿主蛋白质的互作关系对于揭示病毒感染寄主机制有重大意义。那么,如何预测病毒-宿主蛋白的相互作用是当前生物信息领域所面对的重大挑战。预测蛋白质之间相互作用的方法主要有生物学方法和计算学方法两种,传