论文部分内容阅读
在输配电系统中,高压开关设备是极其重要的电力设备。真空开关由于其具有不可比拟的优势而得到广泛的应用。本文简要回顾了国内外真空开关的发展以及前人开展的真空开关基本理论研究;依据目前机电设备最新设计方法,对真空开关产品的研发提出了新的设计理念,引出本文基于虚拟样机的真空开关优化设计的内容与目标。真空开关优化设计涉及多方面的内容,主要集中在电气参数与机械参数。在电气参数设计方面,除了灭弧室的分断与关合特性外,需要考虑因高电压引起的电场分布问题,因大电流引起的导电体发热问题;在机械参数设计方面,需要考虑静力强度问题、动力系统运动问题等。实现电气参数是机械参数优化的目标,而机械动态参数的实现需要对真空开关运动系统进行运动学、动力学分析及动量优化。本文基于虚拟样机定义提出高压真空开关虚拟样机概念,利用计算机及相关软件技术,实现真空开关的模型搭建虚拟、零部件强度的应力场虚拟、导电发热的热场虚拟、绝缘的电场虚拟、运动系统的机械动态虚拟,并可利用这些虚拟实现真空开关在电气、机械方面的仿真和优化。虚拟样机技术首先用于将高压真空负荷开关与高压隔离开关进行有机结合的高压真空负荷隔离开关,以实现高压真空负荷隔离功能为设计目标,搭建虚拟样机模型,对其电气性能要求和机械性能要求进行优化设计。结合高压真空负荷隔离开关的功能和结构特点,完成新型操动机构的研制。依据操动机构的结构特点和动作原理,提出操动机构的优化模型,利用MATLAB对其结构尺寸及动量输出进行优化设计;对真空负荷开关运动系统进行运动学和动力学分析,动量优化确定运动系统的构件尺寸,并通过PRO/ENGINEER Wildfire机械工程动态虚拟样机仿真软件进行仿真验证。通过对研制样机的机械特性测试和型式试验,验证了该优化方法的有效性。真空开关核心部件高压真空灭弧室的研制是其实现高压化的主要“瓶颈”。基于虚拟样机技术的72.5kV高压真空灭弧室主要解决问题是热场虚拟和电场虚拟。通过高压真空灭弧室的导电发热优化其动、静导电杆的截面,通过内部电场分布优化其内部均压屏蔽罩的结构设计。对采用优化结果研制的真空灭弧室进行老炼和静态绝缘试验,验证该新型72.5kV高压真空灭弧室具有更优的静态绝缘特性。基于多断口真空开关理论,提出由两个72.5kV高压真空灭弧室串联而成的126kV高压双断口真空断路器结构,并通过采用永磁操动机构解决断口动作同步性问题。利用高压电场中物体结构形状对电场分布影响的机理,提出了一种新型高压双断口真空断路器结构,并基于虚拟样机技术进行了结构优化,通过断口电压分布试验验证双断口均压性,通过断口静态绝缘试验验证双断口电压击穿增益性。基于虚拟样机技术确定了126kV高压双断口真空断路器的运动系统,并通过机械特性测试验证了优化结果。利用大连理工大学电力电子研究所合成试验回路,依据GB1984-2003和GB/T4473-2008中断路器型式试验的规定,对126kV高压双断口真空断路器样机进行短路电流开断试验。试验结果表明,这种新型结构的126kV双断口真空断路器样机完全胜任126kV电压等级的电参数,达到预期设计目标。72.5kV高压真空灭弧室及126kV高压双断口真空断路器的研制是国家自然科学基金重点项目“金属蒸气电弧等离子体调控理论及在高压断路器领域中的应用”的组成部分之一。