【摘 要】
:
车道线识别及跟踪是自动驾驶视觉感知中极为重要的经典课题,通过识别当前车辆所处环境的车道线,可以为车辆的路径规划提供导航路径,使得车辆可以在标准的道路模型中安全可控的移动。同时,精准的车道线识别也是高精度地图定位的重要依据之一。针对当前基于语义分割的车道线识别方案易受环境负样本干扰、鲁棒性差和识别类别无法为自动驾驶提供充分导航信息的问题,首先完善了道路场景模型,在已有标注方案基础上添加新的车道线类别
【基金项目】
:
陕西省重点研发计划项目(2019NY-170);
论文部分内容阅读
车道线识别及跟踪是自动驾驶视觉感知中极为重要的经典课题,通过识别当前车辆所处环境的车道线,可以为车辆的路径规划提供导航路径,使得车辆可以在标准的道路模型中安全可控的移动。同时,精准的车道线识别也是高精度地图定位的重要依据之一。针对当前基于语义分割的车道线识别方案易受环境负样本干扰、鲁棒性差和识别类别无法为自动驾驶提供充分导航信息的问题,首先完善了道路场景模型,在已有标注方案基础上添加新的车道线类别,并对基于U-Net语义分割模型的车道线识别算法进行改进,然后提出了基于关键点检测的方法实现了车道线识别的优化,最后利用匈牙利匹配和卡尔曼滤波构建了车道线的跟踪算法。本文主要研究内容及结论如下:(1)车道线数据建模及采集。针对当前车道线数据集只标注四种类型车道线(当前车道左车道线、当前车道右车道线、左车道的左车道线和右车道的右车道线),不能满足真实自动驾驶路径规划需求的问题,结合典型变道场景及根据变道场景的需求,添加了新的车道线识别的类别。同时,根据场景的多样性原则进行车道线数据的采集,利用余弦相识度对采集到的视频进行抽帧处理,以保证数据样本之间的差异性。(2)基于改进U-Net的车道线识别。首先以U-Net语义分割模型为基础增加了通道注意力模块,以便自适应的融合多层次的语义信息,丰富模型提取的车道线场景层次信息。然后通过数据增强和反向传播完成模型的训练,并使用了查准率和查全率等度量指标对测试集进行车道线识别效果评估。该模型在测试集上查准率较高,但该模型易受背景负样本干扰,且难以满足嵌入设备的实时性要求。(3)基于关键点检测的车道线识别。针对基于改进U-Net的车道线识别算法存在查准率低和时间复杂度高的问题,提出了一种基于关键点的车道线识别方案,以避免正负样本不均衡以及输出尺寸过大。首先根据透视关系在图片纵轴上不同间隔线性采样车道线的关键点,模型在固定的采样行上预测不同种类车道线对应的横向偏移值及其存在概率值。同时,根据关键点之间的斜率趋势以及车道线之间的距离关系,提出了车道线的几何约束损失函数,用以保证车道线形态的正确。该模型在识别效果和时间复杂度上相较于基于改进U-Net的车道线识别模型有较大提升,其中F1指标提高了6%。(4)基于匈牙利匹配的车道线跟踪。为了获取到稳定可用的车道线曲线参数,在车体坐标系下对车道线的三次曲线方程的参数进行跟踪。首先使用相机模型获取车道线的车体坐标系的坐标。其次对检测到的关键点进行拟合,以获取车道线的曲线参数。然后提出基于两条曲线包络面积作为开销矩阵的匈牙利匹配算法,实现对车道线进行匹配和更新。最后使用卡尔曼滤波对跟踪的车道线参数进行预测和更新。
其他文献
在计算机视觉领域,视频动作识别近年来倍受关注。视频通常具有丰富的场景类型,比如街道监控视频、室内监控视频和某种体育项目的比赛视频等,而针对特定场景下的视频动作识别会更具有实际意义。对于体育视频中的羽毛球单打视频,为了能更好地辅助教练分析视频中球员的动作,以及使用户可欣赏到每种击球动作的视频集锦等多元化需求,本文基于羽毛球视频精彩片段展开对羽毛球动作识别的研究。论文主要的研究内容和结论如下:(1)羽
精准养殖是目前畜牧业发展的主流方向。为提高奶山羊图像分割精度,促进养殖产业精准化和智能化发展,本文以羊场环境下获取的奶山羊图像为研究对象,实现了基于改进Mask R-CNN算法的奶山羊图像实例分割。本文的主要研究内容和结论有:(1)奶山羊实例分割数据集的构建。针对缺少奶山羊实例分割公开数据集的问题,通过在奶山羊养殖场安装远程高清摄像机,获取室内外奶山羊监控视频。首先对视频进行关键帧提取,人工筛选出
目标跟踪是计算机视觉领域的一个重要研究问题,在智能监控、自动驾驶、人机交互以及国防军事等领域都有着广阔的前景与需求。目标在运动过程中的形变、视点变化、遮挡和运动模糊等因素为目标跟踪领域带来许多挑战。基于多域卷积神经网络的目标跟踪方法(MDNet)因其适用于跟踪问题的多域网络结构及良好的性能表现受到了广泛的关注,但仍面临着模型训练速度慢及泛化性能弱的缺点。本文以MDNet及其改进跟踪模型为研究对象,
苹果因其丰富的营养价值,已成为世界上产量较高的水果之一。苹果产业的发展在满足人民生活需求的同时,也为当地经济带来巨大的效益。然而在苹果生长过程中,因受到自然环境因素的影响,在苹果叶片部位会产生多种病害。这些病害严重阻碍苹果正常生长,影响苹果的品质,从而造成巨大的经济损失。构建苹果叶片病害检测模型,对提高苹果品质,减少农户经济损失等方面具有十分重要的意义。本研究以苹果叶片常见的5种病害为研究对象,从
近年来人物图像的应用场景愈发丰富,但在获取过程中,拍摄者审美水平及拍摄环境的差异导致人物图像美感程度参差不齐,因此开展美学质量评价研究,从海量人物图像中挑选出有价值的高美感图像,具有极大的现实意义。人物图像美感评价具有较强的主观性和复杂性,目前还未有统一且完善的评价标准,因此本文以人类视觉特征和审美习惯为依据,提出一种评价人物图像美学价值的可计算方法,用以进一步提高美感评价的准确性,实现各角度的细
随着奶山羊规模化养殖的推进,对羊场的精准监控及高效管理已成为亟待解决的问题。通过对羊场图像的语义分割,观察羊场环境和奶山羊的姿势与位置,可以实时监控奶山羊的行为状态,及时发现奶山羊的健康问题。本文以西北农林科技大学畜牧教学试验基地的奶山羊场图像为研究对象,构建羊场图像语义分割数据集,改进DeepLabV3+的解码网络,并优化ASPP结构,结合通道注意力机制,利用提取的图像特征,实现了羊场图像的语义
三维扫描技术可以扫描获取空间物体的外部结构特征,对于结构形状较为复杂的物体,三维扫描技术可以节省大量人力物力。当前绝大多数的三维扫描设备是分别获得部分点云数据,然后通过点云配准得到物体的完整数据。这样的应用过程没有解决动态扫描问题,不仅使得其应用场景受到极大限制,而且后期配准的时间消耗与精度损失影响了其易用性。为了解决传统双目视觉三维扫描技术需进行多次扫描,然后再进行配准的问题,提出基于光学跟踪的
目标跟踪技术是计算机视觉领域研究的基础任务,其在视频监控、牲畜养殖管理及动物研究与保护等方面均有广泛的应用。随着深度学习技术的发展,目标跟踪算法的性能也得到了广泛提升,但在实际应用中仍面临许多挑战性问题。本文以孪生网络跟踪框架为基础,以西北农林科技大学畜牧教学试验基地中的奶山羊以及VOT2016、VOT2017、OTB2015和La SOT公开数据集为研究对象,在存在相似目标干扰、目标尺度变化、目
小麦条锈病是小麦叶部的主要病害,由于受条锈病侵染的小麦叶片上会附着条锈孢子,使叶片无法正常进行光合作用,从而使叶片枯死,严重降低小麦的产量和品质。而防止小麦条锈病大规模入侵,保证产量最有效经济的手段,就是在小麦条锈病的易感地区培育具有良好抗性的小麦品种。在小麦条锈病抗病育种过程中,对小麦条锈病侵染型级别进行鉴定可以初步判断小麦对条锈病的抗性,这是抗性鉴定的重要步骤。目前小麦抗条锈病育种工作者对小麦
随着图像处理技术的快速发展,骨架提取算法为医学图像处理、科学数据可视化、虚拟现实和游戏等应用提供了技术支持。但现有的骨架提取算法存在难以并行以及并行度不高的问题,如何利用丰富的多核资源加速骨架提取算法,迅速成为了并行计算和高性能计算领域面临的一个紧迫而具有挑战性的关键问题。骨架提取算法中存在复杂的数据依赖关系,导致传统的并行策略在提升性能方面受限。针对这一问题,本文提出基于线程级推测的骨架提取算法