论文部分内容阅读
延迟微分方程在物理、生物、化学、控制等领域中有着广泛的应用.由于只有极少数延迟微分方程能够获得精确解的解析表达式,因此其数值模拟是计算数学领域的一个重要组成部分.本文主要利用有限元法对延迟微分方程展开研究,包括变延迟微分方程、状态依赖延迟微分方程和扩散型延迟偏微分方程模型.第一章绪论,主要介绍延迟微分方程的研究意义、背景,数值方法进展,预备知识和本文研究内容.第二章拟几何网格下非线性比例延迟微分方程连续有限元研究.已有结果在一致网格下,这类方程连续有限元解无法达到经典的超收敛结果.事实上,这是由于延迟项qt可能将当前区间(tn-1,tn)映射到前面两个相邻的区间(ti-1,ti)∪[ti,ti+1)(i<n-2).为避免这种现象的出现,本章基于拟几何网格剖分,讨论非线性比例延迟微分方程连续有限元方法的收敛性,通过单元正交分析和构造低次插值技巧,得到了这类方程的整体收敛和局部超收敛结果.此外,以线性比例延迟微分方程为例,证明了离散的连续有限元法与配置法等价.数值实验验证理论的正确性.第三章拟等级网格下非线性消失延迟微分方程间断有限元研究.首先,给出延迟微分方程间断有限元解的整体收敛阶.其次,通过构造辅助问题,证明了网格点的经典超收敛阶O(h2m+1).最后在得到间断有限元解U与真解插值Πhu之间超逼近结果的基础上,找到其它超收敛点为Radau II点,并证明数值解在这些点上的超收敛阶为O(hm+2).数值实验验证理论的正确性.第四章非消失状态依赖延迟微分方程间断有限元研究.我们将上述消失延迟微分方程间断有限元解的收敛结果推广到状态依赖延迟微分方程上.由于延迟项依赖于方程解本身,使得数值求解这类微分方程更加困难.而且在得到方程近似解之前,无法设计合理的网格使得方程在网格点达到经典超收敛结果.本章首先基于间断有限元法给出方程的计算格式,随后提供一种有效算法计算方程的间断点,并基于间断点设计网格剖分,同时计算出方程的间断有限元解.数值实验验证理论正确性.第五章带扩散项的时间常延迟偏微分方程有限元法研究.主要考虑时间延迟偏微分方程的间断有限元法,首先提出间断有限元离散延迟偏微分方程,利用引理,证明时间上半离散格式的整体收敛阶.然后在时间半离散格式的基础上,提出空间上标准有限元离散,分析全离散格式的时、空整体收敛阶.我们分别通过一维和二维常延迟偏微分方程来验证理论结果的正确性,数值例子中发现时间上有超收敛性,为后续进行时间上的超收敛研究打下基础.第六章的研究基于Zhang[113]关于高次正交多项式插值超收敛性质的结果:对函数作多项式插值,插值多项式的一阶导数和二阶导数超收敛点的估计值被给出.为了更方便地使用超收敛点,我们在此列出具有14位精度的插值多项式一阶导数超收敛点.最后给出数值例子.