【摘 要】
:
随着网络技术和数字媒体的蓬勃发展,当今社会已然迈入信息时代,大量数字化产物在网络空间中存储和传输,如何保障数字资源的存储和传播成为社会广泛关注的问题。数字水印技术在众多安全技术中脱颖而出,在数字资源版权保护问题中展现出独特优势。近年来,鲁棒图像水印技术已取得长足进步,现有的鲁棒图像水印算法已能很好地抵抗常规图像处理攻击,但如何抵抗几何攻击和提高计算精度,依然是数字图像水印研究领域共同面临的难题。本
论文部分内容阅读
随着网络技术和数字媒体的蓬勃发展,当今社会已然迈入信息时代,大量数字化产物在网络空间中存储和传输,如何保障数字资源的存储和传播成为社会广泛关注的问题。数字水印技术在众多安全技术中脱颖而出,在数字资源版权保护问题中展现出独特优势。近年来,鲁棒图像水印技术已取得长足进步,现有的鲁棒图像水印算法已能很好地抵抗常规图像处理攻击,但如何抵抗几何攻击和提高计算精度,依然是数字图像水印研究领域共同面临的难题。本文针对上述鲁棒图像水印算法中存在的难点问题展开了深入研究,主要工作如下:(1)利用高斯数值积分(Gaussian numerical integration,GNI)提出了一种极谐-傅里叶矩(polar harmonic Fourier moments,PHFM)的精确计算方法。然后基于精确PHFM和混沌映射提出一种新的抗几何攻击的水印算法。本文提出的精确PHFM具有更好的几何不变性,对算法抗几何攻击的能力有很大提升;通过使用Tent混沌系统将水印图像置乱,进而使得算法安全性提升。经测试验证,该算法对各类攻击均能有效对抗,在与类似水印算法对比时,也显示出了本算法的优异性能。(2)为提升性能,对上述方案进行改进,将精确PHFM和Logistic混沌映射相结合,提出了用于遥感图像的零水印算法,零水印技术可对遥感图像的像素细节提供保护。在算法中,利用精确GNI对原始灰度图像PHFM进行计算,之后选取性能良好的PHFM幅值进行二值特征图像的构造。最终把加密的logo图像与特征图像作异或,将生成的零水印图像注册并存放在第三方机构,水印构造阶段即完成。在验证版权归属时,在第三方机构中取出零水印图像和待验证图像进行异或,比较提取出的logo图像与原始logo图像的差异,即可核对得到图像的真正所有者。经实验对比,本文所提算法对常规图像处理攻击和几何攻击均具有较好的鲁棒性。(3)提出了一种新颖的零水印方案,用于同时保护两幅相似医疗图像的版权。首先,利用GNI方法设计了一种精确极复指数变换(Accurate polar complex exponential transform,APCET)。然后,基于三元数理论和APCET构造了三元数精确极复指数变换(Ternary accurate polar complex exponential transform,TAPCET)。最后,基于TAPCET和混沌映射提出了一种针对两幅相似医疗图像的鲁棒零水印算法,可同时用于两幅相似医疗图像的版权保护。仿真实验表明,该方案能够抵抗各类攻击的干扰,与其他类似零水印算法相比也具有优异的性能。
其他文献
随着光电子器件的逐步成熟和工程需求的持续推动,新一代的以分布反馈式光纤激光器(Distributed feedback-fiber laser,DFB-FL)作为传感元件的光纤传感器应运而生,近年来,因其具有抗电磁干扰、体积小、线宽窄、功率高、灵敏度高等特性成为了光纤传感领域的重要研究方向。采用DFB-FL进行声传感,可以实现较宽频带范围内空气声信号的探测,具有传输距离远、灵敏度高、隐蔽性好、环境
心房颤动(Atrial Fibrillation,AF)在临床上表现为颤动或不规则的心跳(心律失常),是许多心脏异常的诱发因素之一,具有高致残率和高死亡率。因此,心房颤动的精准识别具有重要意义。目前所使用的房颤检测方法主要为基于波形特征和深度神经网络的检测方法。基于波形特征的方法存在手工提取困难,P波不易检测等问题,使得房颤检测准确率一般、效率低下。基于深度神经网络的方法与深度神经网络的层数之间具
由于实际系统大多数是非线性的,如何处理非线性系统一直是研究的热点。随着模糊理论的发展,模糊控制理论用来处理非线性系统受到诸多研究人员的青睐,如T-S模糊模型能于任意精度逼近一个光滑且有界的非线性函数,将非线性系统描述为一组局部线性模型的凸组合。对于模糊系统的控制综合已进行深入研究并取得重要成果,如控制器设计、H_∞控制等,大多集中于状态反馈,然而实际系统中一些状态很难被测量或者测量的成本很高,因此
本文针对如何更好的建模上下文进行了研究。在上下文的建模和利用中存在着一些问题,本文针对低质量上下文、模糊上下文和缺失上下文三个方面进行了提高上下文质量、模糊本体建模和补全缺失上下文的研究。然后分别将它们应用在了光伏发电预测、文献摘要、文献检索的领域。研究内容如下:研究内容1:对于低质量上下文,本文提出了一种新的方法来建立了高质量本体模型,该本体模型可提高上下文质量。该本体先将上下文按照其来源的不同
心血管病已经成为威胁人类生命健康的主要疾病之一。临床上,心血管病经常伴有心律失常现象发生。有些心律失常可能导致心脏病的症状,包括头晕、昏倒和呼吸急促,还有些类型的心律失常,如房颤和心室颤动,可能会引起中风和心脏骤停,因此及时准确检测心律失常是紧急且必要的。心电信号(ECG)作为一种表征心脏状况的生理信号,对心律失常的检测和诊断具有重要意义。但由于医学数据的特殊性,其标注成本高,许多数据标注的不完全
随着互联网的迅速普及,如何有效地组织、利用以及挖掘数据背后隐含的知识成为一种新的挑战。知识图谱描述了客观世界所存在的实体及语义关联等,并以图结构直观地呈现,为用户提供了结构化的知识,逐渐获得了学术界和工业界的普遍关注,因此如何构建一个知识图谱成为学者们研究的热点。同时多源异构的知识之间往往会存在重复、语义歧义多样、质量参差不齐等问题,要想构建一个高质量的知识图谱,知识融合是不可或缺的关键环节。实体
DNA序列中储存着大量复杂且有价值的生物信息,其中DNA序列的相似性分析可以发现生物之间的进化关系,从而更好地处理生物信息;DNA序列的模式匹配可以统计基因片段出现的位置和数目,有利于对致病基因进行状态跟踪和靶向治疗。但是大多数序列相似性分析和模式匹配方法都针对整个序列而不是频繁序列模式,这就加大了计算的复杂度;并且目前的研究方法均忽略了含缺失碱基的基因片段,即对于负序列模式,还没有统一的分析方法
人脸检测在生产生活中使用越来越广泛,人脸检测安全性问题逐渐成为社会关注要点。人脸攻击导致经济损失事件频频发生,攻击方式主要包括打印照片攻击、屏幕成像攻击、视频回放攻击和假体攻击等,因此在人脸识别中使用活体检测技术越来越重要。随着攻击方式越来越多,人脸活体检测面临越来越大的压力,现今主要使用的活体检测方式比较单一,在复杂环境下准确性和鲁棒性往往达不到要求。在保证模型检测性能基础上还需要考虑模型推理时
在软件的开发和维护过程中,每天会有大量的代码变更被提交到版本管理平台中,而阅读和理解代码的变更是软件开发过程的必要工作,人工的对于变更代码差异的识别也越来越困难。当今软件功能的需求越来越多样化,软件的体系结构也随之增大,如果能够对代码的变更进行自动差异比较分析,则能够将代码变更的差异从源代码中分离,有助于对代码变更的阅读和理解,同时有助于开发人员研究代码变更中相关问题,有利于理解软件演化的过程。当
目前,接入到物联网中的设备数量呈指数级增长,随着这些物联网设备的运行就会生成海量的数据。这些数据可能包含用户的隐私信息,例如家庭住址、年龄、患病史等,若这些数据被任意访问就容易出现隐私泄露问题。如何管理这些海量的数据,使得这些数据能被安全、高效的利用是我们所面临的一大挑战。访问控制技术是目前被广泛使用的安全保护技术之一,为物联网设备数据保护提供了有力支撑。然而,在利用访问控制确保数据能被合法使用的