【摘 要】
:
声子晶体是由密度和弹性常数不同的材料周期性排列形成的一种具有弹性波带隙特征的复合结构,在带隙频率范围内声波的传播被抑制,而在通带范围内声波能低损耗的传播。声子晶体丰富的带隙特性使其在滤波降噪、隔声减振等领域具有重要的应用价值,并且推动了具有各类新颖声学特性的声人工结构的设计与兴起。近年来,声子晶体在换能器的声阻抗匹配应用方面取得了较大的进展,然而,其在新型超声换能器(如电容式微机械超声换能器,CM
论文部分内容阅读
声子晶体是由密度和弹性常数不同的材料周期性排列形成的一种具有弹性波带隙特征的复合结构,在带隙频率范围内声波的传播被抑制,而在通带范围内声波能低损耗的传播。声子晶体丰富的带隙特性使其在滤波降噪、隔声减振等领域具有重要的应用价值,并且推动了具有各类新颖声学特性的声人工结构的设计与兴起。近年来,声子晶体在换能器的声阻抗匹配应用方面取得了较大的进展,然而,其在新型超声换能器(如电容式微机械超声换能器,CMUT)上的应用研究还相对缺乏。本文的研究对象为一维流固型声子晶体(又称一维流固超晶格),对周期/梯度型流固超晶格结构的声学效应及声波调控机理进行了深入的研究,并探讨其在CMUT封装上的潜在应用。主要研究内容如下:1.基于布洛赫能带结构理论和传递矩阵方法,研究了梯度型流固超晶格的声传输特性计算方法。利用Matlab编写了梯度型流固超晶格的声传输特性计算程序,对材料参数和结构参数呈线性分布的梯度流固超晶格结构的声透射率进行了计算,并通过有限元方法验证了计算程序的正确性。2.在周期性流固超晶格结构的基础之上,研究了梯度流固超晶格结构的声传输特性。聚焦于梯度流固超晶格结构的禁带调控,设计了由周期性流固超晶格级联而成的梯度流固超晶格结构(P-GFSL),并揭示了P-GFSL的禁带拓宽与能量捕获机理。进而研究了材料和结构参数对P-GFSL结构禁带位置及宽度的影响规律,利用这种规律能够实现禁带范围的灵活可调。P-GFSL结构在水下隔声和频率分离器件的设计上具有一定的应用价值。3.为了削弱周期性流固超晶格结构通带内的吉布斯振荡,设计了占空比呈对称梯度分布的梯度流固超晶格结构(T-GFSL),对其通带特性及调控进行了研究。在此基础上,分析了不同梯度参量对声传输特性的影响及其调控规律,并通过有限元仿真验证了TGFSL结构的声传输特性。T-GFSL结构在水下高强度超声波能量集中以及滤波方面具有潜在应用。4.针对水下CMUT换能器宽频带的封装与匹配需求及传统单层匹配层的局限性,本文将流固超晶格结构应用于CMUT换能器的封装并开展了理论与仿真研究。结果表明,流固超晶格结构作为CMUT封装层具有宽频透声特性。此外,基于有限元方法的频域和时域计算结果均验证了流固封装结构的透声性能。所研究的流固封装结构有助于水下CMUT换能器优异性能的充分发挥,具有潜在的应用价值。
其他文献
晶体管技术越来越接近摩尔定律的极限,目前由大量硬件块组成的可编程逻辑器件(PLD),其结构复杂、能耗巨大。因此,设计单个电子元件具有可重构化逻辑编程以及神经形态计算能力,成为了延续后摩尔定律时代和发展人工智能的有力补充点。在各种神经形态设备中,电解质调控的双电层晶体管独特的界面耦合和电化学掺杂行为与生物突触活动高度吻合。因此,基于双电层薄膜晶体管构建神经形态工程,实现各种复杂的神经网络计算功能,逐
Ni-W基三元合金具有熔点高、韧性强、硬度大、热稳定性好、耐蚀耐磨以及良好的电催化和磁性等优异性能,常用于航天航空、汽车制造、电子通讯等领域,是当前替代六价铬电镀的最佳镀层。但当下对二元W合金研究较多,关于Ni-W基三元合金的研究较少,特别是Ni-Co-W合金的制备。传统电镀Ni-Co-W合金一方面存在低W含量下耐蚀耐磨性能较差,高W含量下镀层残余拉应力大和易开裂等问题;另一方面,也存在传统电沉积
激光制孔是现代微小孔加工领域的关键技术之一,目前已经有较多的水辅助方法被用来解决长脉冲激光制孔过程中严重的热效应造成的表面飞溅、微裂纹、重铸层等缺陷;超短脉冲激光制孔过程中,等离子体屏蔽,材料去除效率低,微孔加工深度有限等问题。但是,不同水辅助方法效果之间的对比试验较少。因此,本文对水辅助方法进行细分,研究水膜/水下/水基三种水辅助方法对GH4220镍基高温合金激光环切制孔的影响,从微孔的几何形貌
机关党建是加强党的建设的重要环节。党的十八大至十九大期间机关党建研究侧重机关党建科学化水平、创新型格局,以及推动机关党建工作的路径、理论建构逻辑及制度优化方面的研究。党的十九大以来机关党建研究进一步突出了机关党建的政治属性和政治功能,丰富了习近平总书记关于机关党建重要论述的研究。这一时期的研究更加聚焦机关党建重点难点热点问题,从制度建设、光辉历程和经验总结的角度进行了多维度的研究和阐释。加强机关党
滚动轴承作为机械设备的重要组成部分,制定强有效的运维策略能够保证其安全运行,避免由滚动轴承故障引发的重大灾难,如环境污染、人员伤亡、经济损失等。滚动轴承健康运维的关键在于运行状态的实时监测与故障的有效分类,同时,随着“大数据”时代的到来,通过传感技术所采集的数据成为分析滚动轴承“症结”所在的凭据。因此,本文针对滚动轴承运维中的关键步骤——监测与诊断所涉及的三个方面:故障特征提取、状态监测与故障诊断
电子拓扑态是一种新的物质态,其具有新颖的拓扑特性,并很快被引入到光学领域。光子晶体作为一种人工微结构,具有能带结构可人工设计的特性。基于电子拓扑态的相关原理,通过在设计光子晶体结构时引入相关对称性,研究人员很快实现了光学拓扑态,并展开了光子晶体拓扑态的研究,这为光场调控提供了很多新颖的机制,如背向散射抑制的单向传输、赝自旋锁定的波矢方向选择、高维度的光场调控等。本文基于拓扑能带理论和拓扑极化理论,
作为概率论研究的重要问题之一,强极限定理多年来一直受到广大学者的关注,引发诸多思考与讨论。随机环境下马氏链是考虑经典马氏链在随机因素影响下的情况,而双无限随机环境是对单无限随机环境的进一步推广。近年来,关于经典马氏链以及随机环境下马氏链的强极限定理的研究成果颇丰,内容主要涉及中心极限定理、强大数定律、渐近均分性等极限理论。与经典马氏链以及单无限随机环境下的马氏链相比,对于双无限随机环境下马氏链的强
软体机器人多以能大应变的柔软弹性材料为本体结构设计而成,具有无限自由度和连续变形能力,适用于非结构化环境中工作。由于具有类似生物组织“软而湿”特点的其中,聚N-异丙基丙烯酰胺(PNIPAm)温敏水凝胶由于在体积相变温度32℃附近发生明显且可逆的体积溶胀-收缩行为,在仿生软体机器人、靶向载药、柔性传感器等方面具备巨大的研究潜力,然而其响应速度慢以及机械强度不足都限制了进一步实际应用。针对上述问题,本
对单晶硅进行微加工得到的多孔硅是一种用途广泛的新型材料,它不仅具有优异的半导体特性,还因其较大的比表面积、优良的生物传感以及较高的深宽比等优异的性能在光电传感器、陀螺仪等硅微结构光电机电系统和生物医疗医学方面等领域占有重要地位。多孔硅规则阵列结构因其优异的各向异性和统一的规律一致性优异于普通随机多孔硅。本文对P型多孔硅规则阵列结构的制备、孔生长模型,快速制备以及各实验参数对P型多孔硅规则阵列结构的
随着社会的不断发展,能源和环境问题亟待改善。在众多的研究中,光催化技术是一种在能源和环境领域中有着重要应用前景的技术。光催化分解水制氢为缓解21世纪能源和环境问题提供了切实可行的新方案。氮化碳(C3N4)作为一种传统的有机半导体光催化剂一直备受科学家的青睐,这得益于C3N4具有较好的物理和化学稳定性、制造成本低等优点。但是,C3N4同样存在光生载流子复合较快的问题,这是C3N4本身最为“致命”的缺