静电场下正癸烷裂解和萘生成反应的理论研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:alabo353
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
航空飞行器发动机的热防护问题尤为突出,而使用吸热航空燃料作为机载冷却剂的再生冷却(CCA)技术被认为是航空飞行器最有效的热防护方法之一。吸热碳氢燃料不仅为航空飞行器提供推进能量,也提供了裂解化学反应吸热,可以保护发动机部件并冷却燃烧室。因此,开发提高碳氢燃料裂解反应速率的新方法成为许多工程问题中的关键问题。由于碳氢燃料裂解焦化产生结焦积碳的问题,使传热受阻,导致实际应用也有很大阻碍,确定如何控制结焦一直是一个挑战,这对先进航空发动机的CCA技术和飞行器的安全性至关重要。本课题使用密度泛函理论从动力学和热力学角度通过计算反应焓变和构建沿反应坐标的势能面,来揭示静电场对碳氢燃料裂解结焦的影响机制,这在推进裂解结焦影响机理方面有不可替代的作用。静电场能对化学反应进行前所未有的控制,有效影响化学反应性。因此,本文选择了静电场作为催化剂或抑制剂,运用密度泛函理论,针对选定的替代航空燃料正癸烷裂解反应体系,在CAM-B3LYP/6-311G(d,p)水平上计算了静电场下的反应焓变、势能面和参与反应分子的电子结构,探索尚不明确的电场影响机制,以此达到通过电场调控裂解反应速率的目的。研究发现,正癸烷裂解反应不仅基于一个态,在三重态时才会生成相应的自由基,体现在势能面上是会出现态态交叉。静电场促进了正癸烷裂解的反应速率,使正癸烷产生显著极化作用。无论有无电场,C2断键都是正癸烷裂解反应的核心反应,维持着最高比例或稳定的高比例。对于脱氢反应,电场的作用使其百分比增加,但仍不是主要反应路径。利用密度泛函理论同样在CAM-B3LYP/6-311G(d,p)计算水平下优化了苯基在HACA机制下形成萘环的所有相关化合物的几何结构,计算反应焓变和势能面,研究静电场下对碳氢燃料裂解后结焦的反应机制,以此达到控制结焦的目的。研究发现,静电场抑制了Bittner-Howard路径中前两步乙炔加成反应,静电场会增加过渡态中乙炔和苯基的距离,使反应势垒增加,减少了炔烃加成形成长链和环化的可能性。静电场微弱促进了第四步8a-H-萘基脱氢生成萘环的反应,增加了环生长过程中的H*。静电场抑制了苯基丁二烯自由基C10H9*-2异构化成环反应的发生,环化抑制的贡献主要归因于垂直于分子平面。静电场可以抑制通过Bittner-Howard路径生成萘环,抑制环的生长,甚至抑制焦炭的形成。本研究揭示了静电场下正癸烷裂解反应和苯基在HACA机制下成萘环的调控机制,开发了静电场这个可以同时促进燃料裂解反应速率和抑制多环芳烃生长的有效新方法,提高了碳氢燃料的燃烧效率和飞行器的安全性。
其他文献
光生物学制氢技术可利用太阳能作为能量的直接来源,以可再生的生物体或生物酶充当产氢的催化剂,是目前制氢领域的研究热点。在光照和无氧条件下,莱茵衣藻中的氢化酶能够将光解水或胞内有机物分解所产生的质子和电子催化转化为氢气。然而,正常光合作用产生的氧气极易使氢化酶失活,从而降低莱茵衣藻的产氢效率。本文借助莱茵衣藻细胞的内吞能力,通过胞内修饰耗氧的级联酶纳米粒子构筑莱茵衣藻杂化细胞,直接降低了胞内氧含量,缩
学位
由于锂离子电池商用的石墨负极理论容量较低,难以满足目前电子设备快速增长的能源需求。因此寻找长循环寿命和高可逆容量的替代电极材料成为目前研究的重点。基于转换反应的锰基氧化物具有更高的理论容量,被认为是有前途的负极材料,但它的实际应用受到低本征电导率和严重体积膨胀问题的阻碍。为了解决上述问题,可以采用构筑复合和设计特殊结构如空心结构的策略。由金属有机框架(MOFs)衍生出的材料具有众多优势特性,如可以
学位
大气中二氧化碳(CO2)含量上升导致的温室效应是近年来人们普遍关心的环境问题之一,碳捕获和储存(Carbon Capture and Storage,CCS)技术是减少CO2排放的有效手段。燃烧后CO2的捕获,即CO2/N2吸附分离,是CCS技术的重要组成。沸石因低压吸附容量大、稳定性好而被广泛用于CO2/N2吸附分离领域。其中,13X沸石是较常用的商用吸附剂,但由于其孔径单一,导致吸附扩散阻力大
学位
过去几十年中,随着煤、天然气等不可再生资源的消耗,能源危机和环境污染问题日益严峻,光催化技术因可以利用太阳能分解水生成氢气,对污染物也有较好的降解效果而受到研究者广泛关注。但半导体光催化剂往往存在自身电子空穴复合率高、光腐蚀严重等不足,限制了光催化性能的提升。因此,寻找性能优越的光催化材料并通过适当的改性方法提高其光催化性能成为研究的热点。g-C3N4是一种新型的光催化材料,其本身不含金属元素,具
学位
水系锌离子电池(AZIB)以其高安全性及低成本等优势有望成为锂离子电池的替代储能设备,然而,由水电解液引发的一系列副反应(不可控的锌枝晶,正极材料的溶解,负极材料的溶解、腐蚀、钝化,水分解)及液体泄露问题仍待解决。近年来,人们针对这些问题提出了多种解决策略,但是,针对某一问题对电解液进行优化后往往会加剧另一副反应的发生。采用“无溶剂”的固态聚合物电解质(SPE)代替水电解液逐渐受到人们的广泛关注,
学位
随着能源需求持续增加,干旱和沙漠地区建设了大量的光伏发电站,光伏面板表面的灰尘堆积问题日益严重,导致发电效率降低。超疏水涂层由于其具有抗污、自清洁、防雾等特性能够有效解决灰尘堆积问题。然而,通常以二氧化硅为原料制备的涂层耐磨性弱以及和基底之间结合力差,且干旱条件下无法防尘,限制了实际应用。本课题采用溶胶凝胶法制备的Si O2溶液构筑粗糙结构,硅烷提供低表面能基团,随后涂料中引入PDMS颗粒增加耐磨
学位
自由基介导的烯烃分子内基团迁移为合理调控烯烃提供了一种有效的工具。这种方法可以发生特定基团(如芳基,炔基)的重排,进而生成不同基团迁移的产物。这种反应大多条件比较温和,底物的基团普适性很好,可完成重要基团分子内迁移并实现烯烃的双官能团化,使反应符合绿色化学要求,增加原子经济性,有着很大的合成意义和研究价值。炔基是有机化学中十分关键的一个官能团,炔类化合物在有机化学、药物化学和化学生物学等多学科交叉
学位
人类社会活动产生的大量污染物对人类身体健康及生态环境构成了严重威胁。因此,开发高效灵敏的污染物检测材料及技术有着重要意义。作为一种新型荧光探针材料,配位聚合物以其高选择性、高灵敏性等优势迅速成为了研究热点之一。针对硝基芳香族化合物(NACs)、高锰酸盐(Mn O4-)及部分重金属阳离子等污染物的荧光检测研究还相对较少,因此本研究采用原位水热/溶剂热法等方法设计合成了系列高选择性、快速响应及低检测限
学位
一氧化碳(CO)是一种无色、无味、危险、易燃、有毒的气体,具有一定的还原性,在空气中能持久稳定存在。CO作为最有害的碳氧化物,亟需开发一种高灵敏度、高选择性和可靠的传感器,用于实时检测低浓度CO。亦可制备一种高效催化剂,将CO直接转化为无毒的CO2。作为n型半导体,Sn O2具有价格便宜、耐光、耐热等诸多优点,并且可以活化表面的吸附氧。因其优越性在众多过渡金属氧化物中脱颖而出,成为一种受欢迎的催化
学位
α-Fe2O3禁带宽度窄、天然丰度高、价格低廉、安全无毒、兼具光催化半导体和芬顿催化剂两方面优势。但是,在光芬顿反应过程中存在电子(e-)和空穴(h+)分离和转移速度慢且易复合、有效p H范围窄、反应速度慢等缺点,限制工业领域应用。形貌调控和构建异质结是对催化剂改性的有效手段,采用金属有机骨架(MOFs)衍生策略,以Ui O-66(Zr)-NH2为模板,通过异质外延生长方法合成MIL-88B-on
学位