视觉引导下的机器人行为控制系统设计

来源 :西北大学 | 被引量 : 0次 | 上传用户:zhubin19851021
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目前,全球正面临着人口老龄化,并由此引发了一系列严峻的社会问题。随着家庭结构模式趋于小型化,生活节奏不断加快,养老问题变得格外突出,对社会的发展带来严峻考验。智能机器人的出现为上述问题的解决提供了一种新的思路,本文基于机器视觉算法和机器人行为控制算法的研究,设计并实现了一个视觉引导下的机器人行为控制系统。本文主要工作包含:(1)基于深度相机的物体识别与定位。首先拍摄了953张包含44种物体的室内场景图像,并利用Label Img完成标注,并将其与Microsoft Common Objects in Context(MS COCO)数据集和Pascal Visual Object Classes(Pascal VOC)数据集部分图像一起形成训练集。其次利用迁移学习对基于You Only Look Once version 4(YOLOv4)算法的目标检测网络进行训练。最后通过深度相机得到待抓取物体(目标物体)的深度值,根据Socket编程,将目标物体坐标位置传递给下位机,用于指导机器人的行为。通过实验表明,加载训练好的目标检测网络,目标检测成功准确率达到94.17%。(2)基于反向传播(Back Propagation,BP)神经网络的机器人行为控制。根据上位机提供的目标物体空间坐标位置,搭建BP神经网络,拟合目标物体空间位置与机械臂各舵机脉冲宽度调制波占空比之间的映射关系,完成网络训练和测试。通过实验表明,加载训练好的BP神经网络,配合压力传感器,机械臂抓取物体成功率达到90.03%。(3)基于深度强化学习网络的机器人行为控制。基于BP神经网络的机器人行为控制方法存在动作不协调、无效动作等问题,同时单纯的BP神经网络是一个开环系统。为了解决上述问题,本文采用深度强化学习来进行机器人行为控制。传统的深度强化学习仅将机械臂末端执行器和目标物体之间的距离作为奖励函数,本文给出了一种新的奖励机制,该奖励机制增加角度和相对距离的约束。通过实验表明,所提方法改善了机械臂动作不协调以及无效动作等问题。经过系统调试与测试后,本系统能够在室内环境下,完成多种物体的识别和定位,并协助行动不便的人完成物体拿取,达到了系统设计需求。其对于促进家庭服务型机器人的推广应用具有重要的理论意义和实用价值。
其他文献
近年来,随着对神经网络的不断探索及移动手机硬件的更新换代,越来越多的研究聚焦于如何设计有效的模型,支撑起移动终端的任务推理。图片分类是众多研究中的经典任务,可用于以图搜图、人脸识别、医疗影像等诸多领域,在现实中有重大实用意义。而在移动端上进行图片分类主要面临如下两个问题:神经网络模型往往是参数量大且计算密集型的,存储和计算资源的开销给移动端带来了很大的负担;而移动端和云端结合的处理方式虽然高效,但
秦始皇兵马俑挖掘出土时大多已破碎残损,大量文物碎片拼接修复复杂,其拼接复原便成为复杂的数学问题,高性能模型智能处理方法研究成为推动该问题解决的关键。由于直觉模糊集同时考虑了隶属度、非隶属度与犹豫度这三方面信息,更加适合处理多碎片拼接过程中“匹配”程度上的不确定性,为受损俑体自身形状模糊表示、特征缺失的模型表示、受损俑体自身特征模糊不易提取表示问题提供技术支撑,实现精准建模,支持在模型特征空间上的系
生物系统蕴含着各种各样复杂的结构与功能,例如其内部固有的异质性和催化转化等。为了进一步阐明这些复杂系统中的各种生理机制,推进单分子生物技术的创新发展已刻不容缓。与传统的集成平均法相反,单分子纳米通道技术可以在高时空分辨率下追踪单个生物分子的动态行为。更重要的是,该方法具有同时获取多个分子指纹信息的独特功能,因而适用于复杂生物流体和微小差异组分的高通量多重分析。本论文以此为出发点,将嵌入仿生分子受体
糖肽质谱数据的无标记定量算法是生物信息学中重要的研究内容之一。随着计算机技术的快速发展,使得面向糖肽质谱数据的无标记定量算法研究成为可能。为了完成计算机辅助的糖肽质谱数据无标记定量,本文解决的问题及主要工作如下:(1)针对峰簇混叠导致的峰簇分离提取易出错问题,本文结合离子同位素分布规则,提出了一种基于三维信息的多电荷混叠峰簇分离提取算法(3D-based Multiple-charges Over
软件缺陷是软件或者程序中存在的某种破坏程序正常运行能力的问题、错误,其存在会给软件带来安全隐患。随着软件规模变大,其结构越来越复杂,如何在软件动态变更过程中尽早发现和修复软件缺陷,已成为各大软件公司关注的热点。软件缺陷预测(Software Defect Prediction,SDP)旨在通过某种手段检测当前项目中哪些模块可能出现缺陷。传统的软件缺陷代码检测采取全量检测方式,时效性较低,并且在缺陷
知识追踪任务是根据学生历史学习行为来追踪学生的知识状态,以预测学生在未来交互中会如何表现。通过对学生知识状态建模,可以为学生提供个性化的学习指导,帮助学生摆脱题海战术,同时也有助于教师更好地了解学生的学习水平,并相应地调整教学方案。本文以学生答题序列数据为研究对象,主要针对深度知识追踪开展如下相关研究工作:(1)针对现有的深度知识追踪方法没有全面考虑学生答题行为特征对学生学习过程的影响这一问题,提
近年来,互联网汽车共享服务的迅速发展满足了人们对于舒适、便捷的交通方式的需求,但大量的网约车加剧了城市的道路拥堵、环境污染和资源消耗。网约车拼车服务使一辆车能够同时服务多位出行路线相似的乘客,减少非必要车辆出行,缓解交通压力。但是,现有的动态拼车匹配算法忽视了潜在的乘客出行需求,导致车辆的拼车载客率较低。因此,研究潜在乘客的出行规律并提出基于出行需求预测的动态拼车匹配算法具有较大的意义。此外,在乘
气敏传感器是传感器领域中的重要组成部分,对推动智能感知监测、实现万物互联具有极其重要的作用。虽然半导体气敏传感器已广泛应用于各个领域,但目前依然存在诸多问题以待解决,如工作温度较高、气体选择性较差,低响应度等,故而开发工作在室温环境高选择性和高响应度的气敏传感器尤为重要。本论文从气敏传感材料研制的角度出发,采用两步微波水热法合成了可在室温环境对NO2气体具有高度选择性的Bi2S3/MoS2复合材料
图像分类是大数据及智能信息时代下应运而生的产物,已经成功的应用到商品分类、美食分类、旅游景点分类、视频分类、图书分类等各种场景。目前,大部分图像中都包含多个感兴趣对象,且需要多个标签对这些对象进行标记,这类图像分类任务即多示例多标签学习(MIML)。大部分MIML深度学习架构更多关注如何在空间维度里改进网络,然而在实际应用此类方法并不能有效提高图像分类精度,其原因在于这些架构没有考虑到一个标签有多
随着智能终端的普及,休闲类游戏因其玩法简单易上手的特点,同时由于越来越多优秀的人工智能算法的应用极大丰富了游戏趣味性与益智性,逐渐成为一种老少皆宜的娱乐方式。而对游戏开发者而言,虽然市面上出现的流行游戏引擎已经在很大程度上降低了游戏开发难度,但是在面临不同的游戏需求时,开发人员仍然需要根据具体游戏玩法进行引擎层之上的结构设计与开发。针对以上问题本文对常见休闲类游戏游戏进行结构分析,提出基于可扩展状