【摘 要】
:
日常生活中经常发生冲击爆炸问题,其中诸如车祸等有害碰撞严重威胁人们的生命财产安全。薄壁结构作为重要缓冲防护结构,具有诸多优异特性,例如质量轻、成本低、可设计性强等,在航空航天、交通运输等多个领域得到了广泛应用。为避免结构飞溅等二次冲击伤害,传统的薄壁管吸能结构通常需要施加额外的外界约束。因此发展一种可扩展组装、易于拆卸、便于运输的可扩展薄壁自锁吸能结构成为迫切需求。然而,现有自锁结构存在比吸能较低
论文部分内容阅读
日常生活中经常发生冲击爆炸问题,其中诸如车祸等有害碰撞严重威胁人们的生命财产安全。薄壁结构作为重要缓冲防护结构,具有诸多优异特性,例如质量轻、成本低、可设计性强等,在航空航天、交通运输等多个领域得到了广泛应用。为避免结构飞溅等二次冲击伤害,传统的薄壁管吸能结构通常需要施加额外的外界约束。因此发展一种可扩展组装、易于拆卸、便于运输的可扩展薄壁自锁吸能结构成为迫切需求。然而,现有自锁结构存在比吸能较低的问题。本文围绕提高结构比吸能的目标,提出了蜂窝填充自锁结构、变截面扁工字型自锁结构和多阶变截面工字型自锁结构,研究了结构及系统的准静态力学响应和变形失效特性,主要研究内容如下:(1)利用蜂窝的面外力学性能高的优势和自锁结构可扩展、易组装等功能性方面的优势,提出了蜂窝填充自锁管结构,通过实验和数值模拟的方法对比研究了填充蜂窝前后自锁结构/系统在准静态压缩下的变形模式、承载能力和吸能性能,并与现有自锁结构进行了对比研究。(2)基于超折叠单元理论,建立了静态压缩下方形蜂窝填充工字矩形自锁管结构的平均压缩力预测模型。研究了填充蜂窝孔隙率、蜂窝排布方式、装配间隙、堆叠方式等因素对结构变形和吸能的影响规律。(3)基于多阶和扁平化设计思想,提出了一种全方位自锁的变截面工字型自锁结构,通过准静态纵向侧压实验研究了工字型薄壁结构的力学性能,并建立了变截面工字型薄壁结构的有限元模型,同时以提高结构比吸能为目标对结构进行了优化设计。
其他文献
变形描述是力学分析的基础,只有实现对变形应变场描述的完善,才能准确的研究物质材料属性。由于大变形的过程过于复杂,其中包含了大量的非线性,因此对其的正确描述十分重要。在小变形的理论框架中,当变形体的尺寸非常小时,通过考虑转动变形可以解决经典弹性理论不易解决的问题,这说明了在一些情况下对转动变形的考量是必不可少的,同时由于力偶的作用,应力张量是不对称的。但是当变形较为复杂时,由于小变形理论存在大量假设
褶皱夹芯结构具有优异的力学性能,其尺寸的可设计性可以将其应用在各个领域。但特种纸的克重和浸胶量对其力学性能的影响研究较少,故本文从制备工艺、实验表征、有限元模拟方面研究了不同克重的特种纸和不同浸胶量对褶皱夹芯结构力学性能的影响,主要开展以下工作:(1)探索了真空吸附一次成型工艺,通过特种纸纸浆来直接制备V-型褶皱芯子,对芯子的几何尺寸进行了分析,发现因短切纤维在打浆过程中会产生细小的纤维碎片,在真
在疲劳载荷和腐蚀环境等因素的影响下,对重大装备中材料早期损伤的无损检测和评估具有迫切需求。由于非线性超声检测技术对空间尺寸远小于超声波波长的材料微观结构特征有足够的表征灵敏度,对材料早期损伤的评估和检测具有特殊优势,近年来受到极大关注。超声非线性检测技术主要包括高次谐波技术、静态分量技术和混频检测技术等。其中,混频检测技术由于能够对局部损伤进行扫描定位和定量评估、具备较强的抗干扰能力等优点而引起广
当今社会,流行性疾病的频繁发生和自然环境的日益破坏,促使了更多的人开始关注健康问题。随着信息化医疗技术高速发展,如何侦测与管控流行性疾病,建立全社会的智能健康管理系统,已成为国家疾病预防控制中心的重点研究方向。目前,大多的生理参数监测设备都是以医院或家庭为背景而设计的,存在检测对象单一,设备价格昂贵,缺少互联网接入,难以实现区域性检测等问题。鉴于此,本文旨在设计一种能辅助公共卫生机构应对流行性疾病
Ti6Al4V合金由于机械性能好、电化学性质稳定被广泛地应用在航空航天、汽车、生物医学和海洋舰船等领域,在湿热盐环境下,Ti6Al4V合金在电化学作用下发生腐蚀,造成大量的资源浪费。氮化钛涂层具有良好的电化学稳定性和耐磨性能,被广泛地作为耐蚀和耐磨涂层,然而由于氮化钛柱状生长等自身结构缺陷,腐蚀离子会渗透到内部破坏其结构,目前改变氮化钛耐蚀性能的有效方法是添加中间金属层来抑制其柱状生长。因此,本文
固态电解质替代有机液态电解质而发展起来的固态电池是一类新型储能电池,有望从本质上解决传统锂离子/钠离子电池中的安全性问题,同时提高电池能量密度。其中,无机氧化物固态电解质材料具有化学/电化学稳定性好、机械强度高、成本低、载流子唯一、对金属阳极稳定等诸多优点。但是,存在离子电导率低的难题;另外,无机氧化物固态电解质材料通常都需要烧结致密化,在高温烧结过程中,晶粒容易异常长大,探索烧结致密的纳米晶无机
连续碳化硅纤维增强钛基(SiCf/Ti)复合材料兼具高比强度和抗疲劳性等优点,特别在航空发动机工作的中温段(650℃-1000℃)具有广阔的应用前景。真空热压制备过程中界面反应导致的金属间化合物是影响其力学性能的关键。相关的研究主要集中在两方面:一是界面反应层的生长演化问题;另一方面是受界面影响的复合材料的力学性能的问题。前者是生长的动力学问题,后者是力学性能评估问题,两者紧密相关且相互依存。例如
固定弹簧式起落架具有结构简单、可靠性高和维护保养成本低等特点,常用于通用航空飞机的主起落架,固定弹簧式起落架的着陆动态性能研究与优化对通用航空飞机的研发有重要的意义。本文的主要研究对象是固定式管簧起落架。首先建立了起落架管簧支柱和轮胎的有限元模型,并分析了轮胎的下沉量,然后在飞机的最大着陆设计质量下,以不同的下沉速度研究起落架的着陆动态性能,得到起落架在着陆过程中的垂向载荷、侧向载荷、过载和垂向压
环氧树脂是一类具有优异力学性能、尺寸稳定性和耐酸碱等优点的热固性树脂,广泛应用于电子器械、复合材料等领域;然而其不溶不熔的特性使其固化后无法再次加工或重塑,且废弃后难以回收会造成固废污染。类玻璃体高分子具有动态共价键,可再愈合和再修复性。环氧树脂类玻璃体作为一种典型的类玻璃体,除具有极高的力学强度外,还能在高温下能够实现拓扑化结构的重排,被认为是继热固性材料和热塑性材料之外的第三类高分子材料。柔性
自然界中的大帛斑蝶等昆虫通过拍动翅膀而进行飞行,且表现出卓越的飞行能力;在飞行的过程中,它们的翼面都会发生显著的柔性变形,该柔性变形会引起周围流场的结构发生变化,从而对它们的飞行姿态和飞行能力有着重大的影响。近年来,人们对生物飞行的空气动力学机理充满兴趣的同时,也对仿生扑翼微飞行器(Flapping-Wing Micro Aerial Vehicles,FMAV)的开发满怀热情。而翅翼作为FMAV