论文部分内容阅读
聚丙烯酰胺(polyacrylamide,简称PAM)水溶液具有高粘度、增稠性、絮凝性等多种重要的性能,可广泛应用于现代工农业的多个领域,包括污水处理、油田开采、造纸、制碱、制糖、洗煤、选矿、土壤改良、吸湿等,对国民经济的发展具有重要意义。大多数时候,PAM分子量越高越好,因此,从上世纪五十年代开始,提高PAM分子量一直是一个重要的课题。由于单体丙烯酰胺(Acrylamide,简称AM)毒性较大,所以无论在什么应用领域总是希望聚合物中残留的丙烯酰胺单体越少越好,在食品和饮用水应用领域对单体残留则有严格的规定。聚丙烯酰胺主要以干粉形式储存和运输,在使用时常需先溶于水,因此也希望溶解时间尽可能短,不溶物尽可能少。由此可见,高分子量、低单体残留、速溶型聚丙烯酰胺是绝大多数应用场合的共同要求。本试验用水溶液聚合法制备出了聚丙烯酰胺,分别采用了五种氧化还原引发体系:APS(过硫酸铵,英文:Ammonium persulfate)—DA(四甲基乙二胺,英文:1,2-did(dimethylamino)ethane),APS—PMS(偏重亚硫酸钾,英文:potassiummetabisulfite),APS—SBS(亚硫酸氢钠,英文:Sodiumbisulfite),PPS(过硫酸钾,英文:Potassium persulfate)—PMS,PPS—DA。通过比较,APS—DA引发体系得到的分子量最高,APS—PMS次之;还原剂对聚合速率起主要作用,采用DA聚合速率最快,PMS和SBS聚合速率较慢;各体系对转化率影响不明显。从聚合产物性能而言,APS—DA为最佳引发体系,但考虑到DA毒性较大,实际应用受到限制,所以最终确定APS—PMS为最佳聚合体系。确定了在APS—PMS体系下的最佳聚合条件:单体浓度23%,采用APS(0.08%)—PMS(0.08%)引发体系,氨浓度0.2%,温度为40℃,聚合时间8h,pH为10。此时PAM分子量在1300~1500,转化率接近100%,并且没有水不溶物。另外,在试验中发现当采取低单体浓度(20%)或低温(30℃)聚合时分子量可以达到1900万左右。考察了最佳聚合条件下杂质对聚合物的影响,铁离子(Fe3+)和氢氰酸在考察范围内对分子量影响不明显,有机杂质(包括丙烯腈、丙烯酸、β-羟基丙腈、乙腈、丙酮)均需达到较高浓度(1000ppm以上)时才会对分子量造成明显影响,一般AM单体中不会存在如此高浓度的杂质,所以AM单体水溶液聚合时也可以不考虑这些杂质对分子量的影响。只有铜离子(Cu2+)对PAM分子量影响很大,浓度应严格控制在0.2ppm以下。在所有实验中,均未发现杂质造成转化率的明显降低。对APS—DA和APS—PMS体系引发的PAM进行了结构和性能分析。通过对红外光谱的分析,两种引发体系的聚合产物结构基本相同,主要成分都是PAM。通过TGA分析,两种聚合产物的热失重曲线非常接近:200℃前样品无分解;200~300℃样品发生脱氨分解,失去部分重量;300~450℃时样品快速失重,450℃时样品几乎完全炭化。该变化规律与理论值比较符合,说明聚合产物热稳定性较好。通过气相色谱分析,测得两种引发体系的单体残留量均小于0.05%,表明在单体残留方面达到了食品级的要求。