论文部分内容阅读
目的利用三维有限元方法,通过模拟建立使用传统钛网和3D打印颈椎多孔型金属网式融合器的颈椎前路椎体次全切减压植骨融合内固定手术模型,进行对比分析两者在钛网、钛板钛钉及终板上Von-Mises应力分布情况及椎体位移峰值特点,来评估3D打印颈椎多孔型金属网式融合器的生物力学特性,为临床应用及下一步改进提供理论依据。方法1.通过获取一名32岁正常健康男性志愿者的颈椎三维CT数据,以Dicom格式保存。在三维重建软件Mimics中将其导入,予以阈值分割、Mask等处理后导出,保存为STL格式。再在Geomagic软件中将之导入,对其进行逆向重建并予以完成模型相关的平滑,去噪等处理,以IGES格式保存。再在Ansys Workbench中将其导入,经一系列操作后,建立颈椎(颈3~颈7)三维有限元模型。然后进行布尔运算,赋予材料参数,设置好接触,进行网格划分,予以模型40N的预载荷,1.5Nm的运动附加力矩,进行前屈后伸,左右侧屈,左右旋转运动,将计算所得的各运动节段活动度与以往文献对比,来评价模型的有效性。2.模型验证有效后,再在此模型上,模拟建立使用传统钛网和3D打印颈椎多孔型金属网式融合器的颈椎前路椎体次全切减压植骨融合内固定手术模型。手术模型建立后,将其在前屈后伸,左右侧屈,左右旋转六种工况下,施加73.6N的预载荷和1.8Nm的运动附加力矩,比较两种ACCF手术模型中的钛网、钛板钛钉及终板上Von-Mises应力分布情况及椎体位移峰值特点。结果1.成功建立正常人的颈3~颈7椎体的三维有限元模型。并在前屈后伸,左右侧屈,左右旋转工况下,下颈椎各节段的活动度与以往文献结果相似,在其范围内,证明模型有效。2.模拟使用传统钛网与3D打印颈椎多孔型金属网式融合器建立的颈椎前路椎体次全切减压植骨融合内固定手术模型的三维有限元分析结果:(1)在钛网最大应力方面,3D打印颈椎多孔型金属网式融合器与传统钛网相比,在前屈状态下,其最大应力下降了91%;后伸状态下,下降了90%;左侧屈状态下,下降了98%;右侧屈状态下,下降了97%;左旋状态下,下降了86%;右旋状态下,下降了84%。(2)就椎体位移峰值而言,3D打印颈椎多孔型金属网式融合器与传统钛网相比,在前屈及右侧屈状态下,两者最大椎体位移峰值相同;后伸及左侧屈状态下,3D打印颈椎多孔型金属网式融合器最大椎体位移分别增加了0.02mm及0.16mm;左右旋状态下,其最大位移分别下降了0.04mm和0.21mm;两种钛网各有优劣。(3)就钛板钛钉最大应力而言,与传统钛网相比,3D打印颈椎多孔型金属网式融合器手术模型组中钛板钛钉最大应力在前屈状态下增加了7%,在后伸状态下降低了37%,在左、右侧屈状态下降低了5%,在左旋状态下降低了9%,在右旋状态下降低了26%。(3)在C4椎体下终板的最大应力方面,与传统钛网相比,3D打印颈椎多孔型金属网式融合器的终板最大应力,在前屈状态下,下降了51%;在后伸状态下,下降了15%;在左侧屈状态下,下降了55%;在右侧屈状态下,下降了43%;在左旋状态下,下降了8%;在右旋状态下,下降了12%。在C6椎体上终板的最大应力方面,与传统钛网相比,3D打印颈椎多孔型金属网式融合器的终板最大应力,在前屈状态下,下降了43%;在后伸状态下,下降了83%;在左侧屈状态下,下降了70%;在右侧屈状态下,下降了52%;在左旋状态下,下降了55%;在右旋状态下,下降了29%。在前屈后伸,左右旋转工况下,两种钛网的终板应力最大值都位于上下终板后缘,但3D打印颈椎多孔型金属网式融合器的终板后缘应力要小于传统钛网,且有显著性差异。结论1.建立的颈3~颈7椎体三维有限元模型经验证有效,可用于三维有限元分析。2.与传统钛网相比,3D打印颈椎多孔型金属网式融合器在理论上具有良好的即刻稳定性及应力分布情况。