论文部分内容阅读
气体传感器作为一种重要的气体检测装置,被广泛地使用在工业生产和日常生活的各个领域。例如氢能越来越多地应用在燃料电池和氢能源汽车中。缺乏对氢气有效的检测手段容易发生泄漏而引发火警或爆炸等安全事故。或者是在日常生活中容易产生的一氧化碳,会对人们的生命造成威胁。随着一些气体越来越广泛地进入普通人们的日常生活或者应用于工业生产中,其安全隐患势必面临更加严峻的形势,因此开发安全可靠、廉价实用、灵敏度高的气体传感器具有十分重要的意义。二氧化锡等金属氧化物半导体是重要的气体敏感材料,但市场上二氧化锡多孔厚膜气体传感器存在一个明显的缺陷,即需要很高的工作温度,一方面增加了它们的工作能耗,另一方面也造成了其他还原性气体的交叉响应,减少了传感器的服役时间,因此使其应用范围受到严重限制。由低维纳米结构的氧化物半导体制造的室温气体传感器已经在实验室出现,但是它们也存在一些固有缺点使其迄今仍难以走向应用。本文采用了催化剂–氧化物半导体复合的形式,制备出多种催化剂–二氧化锡复合陶瓷,它们在室温下对于氢气、一氧化碳具有显著响应,这些块体复合陶瓷表现出极大的应用前景,例如机械强度高,制备一致性好,工艺简单,成本低,响应灵敏等。本研究通过大量实验,筛选出那些在室温下对目标气体具有明显响应的体系,对若干综合性能优良的复合多孔陶瓷的室温气敏性能进行全面的表征,包括抗湿能力、时间稳定性等,并对其形成机理进行深入的分析研究。具体内容如下:1.将各种不同的二氧化锡粉料,包括不同粒径的纳米颗粒、团聚体颗粒以及微米颗粒的二氧化锡,分别与不同含量的Pt或者Pd进行复合,通过压片以及烧结的方式制备出多种二氧化锡与催化剂的复合多孔陶瓷。实验结果表明通过适当的压力和烧结温度可以制备出多空隙、大的比表面积、高的机械强度的气敏陶瓷材料。2.由金属钯和纳米二氧化锡复合制备成的多孔陶瓷在室温下对一氧化碳有很强的响应,在一氧化碳浓度为400 ppm的合成空气(O2体积分数为20%)中,响应高达两个数量级。钯的含量以及烧结温度对该多孔陶瓷的室温气敏性能起决定性作用。钯含量超过2 wt%样品在室温下对一氧化碳没有响应,而钯含量小于2 wt%大于0.25 wt%,并且烧结温度在900℃以上的样品才在室温下对一氧化碳表现出很强的响应,对这类样品进行表面形貌、相结构以及价态分析,结果表明样品中的Pd4+可以引起一氧化碳在室温下的化学吸附,因此具备室温一氧化碳敏感性能。3.由金属铂和二氧化锡团聚体复合制备成的多孔陶瓷在室温下对氢气有非常强的响应,在相对湿度为50%环境下对10000ppm的氢气响应高达800倍,相对于之前的工作中的铂–二氧化锡复合纳米陶瓷来说,响应提高了50%,并且抗湿性能有明显提升。当环境湿度提高到70%后,响应依旧很强,约为450倍。结果表明二氧化锡的微观结构对材料的室温氢敏性能有很好的调控作用,团聚体颗粒制备的样品对氢气的响应以及抗湿性能有明显提高。4.贵金属催化剂-二氧化锡复合多孔陶瓷不仅具有优异的室温气敏性能,这种性能还能在自然条件下保存相当长的一段时间,即具备一定的抗老化性能。对于钯–二氧化锡复合纳米陶瓷,即使在经过半年时间的老化之后,在室温下对一氧化碳仍有很强的响应,只是响应速度和恢复速度有所下降,依然具备对低浓度一氧化碳的检测能力。铂–二氧化锡复合纳米陶瓷(由二氧化锡团聚体粉末制备)在室温下则对氢气有很好的响应以及选择性。对该样品的跟踪测试显示,在经过半年老化之后,灵敏度与响应速度基本与初始制备时保持一致,只是恢复速度有所下降。即使在经过一年的老化后,这种复合纳米陶瓷的室温氢敏曲线仍然与老化半年的测试曲线保持一致,表明在一段时间的老化过后,它的室温氢敏性能可以长期保持稳定。这种催化剂-二氧化锡复合多孔陶瓷体系在抗老化方面表现不错,具有很好的应用前景,但性能依然有待改善,以后需要对其进行更多的研究。