用于板壳结构瞬态声振分析的比例边界有限元法

来源 :南京航空航天大学 | 被引量 : 0次 | 上传用户:fkswind
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
板壳结构是航空航天飞行器、舰船和汽车等机械系统的重要组成部件并通常受到瞬态载荷的激励而向周围空间辐射噪声。构建能够有效预测板壳结构声振行为的计算方法将为设计低噪声的机械系统提供技术支撑。比例边界有限元法(SBFEM)是一种求解偏微分方程的新技术。它对问题域的边界采用有限单元近似而寻求沿径向的解析解。SBFEM很适合处理奇异性和无限域问题且已被用于平板的静力分析以及有限声场和无限声场的时域建模。然而,有关该方法在一般壳以及板壳声振耦合建模方面的研究尚未见报道。本文以构建用于板壳结构瞬态声振分析的统一的SBFEM为最终目标开展了如下工作:一、构建了用于直梁静力和动力分析的SBFEM。将梁当作平面应力问题,应用包含惯性力所作的功的虚功原理推导了比例边界有限元方程;用线单元离散梁的纵向,采用Padé展开解析表达沿厚度的解,最终同时得到了单元静刚度矩阵和质量矩阵。算例表明,该方法能够精确预测直梁的静力和动力行为。二、构建了用于由单向板和二维无限声场组成的声振系统瞬态分析的SBFEM。基于分析直梁的SBFEM将单向板当作平面应变问题进行建模;为无限声场引入一虚拟圆形边界,将内部区域分割为一系列多边形子域并采用改进的连分法分析,外部区域由改进的高阶双渐近开边界模拟;选择速度势为声场的基本变量;结构部分和声场部分独立离散,采用配点法实现离散交界面间的数据传递;应用Bathe时间积分法对系统方程进行求解。算例表明,该方法能够精确、高效地分析二维声振耦合问题。三、构建了用于一般壳静力和动力分析的SBFEM。将壳当作三维弹性体,基于新提出的“法向比例策略”并应用包含惯性力所作的功的虚功原理推导了比例边界有限元方程;用二维有限单元离散壳的底面,采用Padé展开解析表达沿厚度的解,最终同时得到了单元刚度矩阵和质量矩阵。算例表明,该方法能够精确模拟各类几何构型的壳结构。四、构建了用于由板壳结构和三维无限声场组成的声振系统瞬态分析的SBFEM。应用基于法向比例策略的SBFEM对板壳结构进行建模;为无限声场引入一虚拟球面边界,将内部区域分割为一系列多面体子域并采用改进的连分法分析,外部区域由改进的高阶双渐近开边界模拟;选择速度势为声场的基本变量;结构部分与声场部分独立离散,采用配点法实现离散面间的数据传递;应用Bathe时间积分法对系统方程进行求解。算例表明,该方法能够精确、高效地分析三维声振耦合问题。由此可见,本文工作在拓展SBFEM应用的同时进一步丰富了其理论。
其他文献
新冠疫情于2020年1月爆发于我国湖北武汉,世界卫生组织在2020年1月30日公布:将新冠肺炎疫情列为国际关注的“突发公共卫生事件”,其对全球的经济都产生了巨大的冲击。无一例外,我国的宏观经济受到了严重的冲击,很多行业都面临着严峻挑战。虽然我国政府在2022年12月发布文件“不得扩大核酸”,成为了我国疫情防控的一个重要的转折点,但并不代表新冠肺炎就此销声匿迹。医药生物行业在新冠疫情期间起到的至关重
学位
机器学习是一门多领域交叉学科,通过研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能。面对大数据环境中海量的各种信息,经典的机器学习往往存在计算复杂、训练过程缓慢的问题。因此,将机器学习与量子计算相结合,研究量子机器学习算法实现对经典计算的加速,解决数据量巨大、计算复杂的问题,从而满足大数据智能处理的需求十分必要。经典机器学习算法主要包括分类、降维、聚类、回归。本文主要致力于大数据下量子
学位
随着超分辨率显微镜和超级计算机等现代技术的发展,人们发现幂律扩散现象广泛存在于软物质和生命细胞等复杂系统中,这类与经典的Brownian运动性质截然不同的过程称为反常扩散。在反常扩散理论中,分数Brownian运动是一个具有时间相关性的重要模型,被应用于生物、经济、材料、物理等领域。近年来,在非均匀复杂系统中报道了一些新的反常现象,如扩散系数非唯一、Brownian非Gaussian,这些现象已经
学位
舵机作为智能弹药弹道修正的主要执行机构,其性能的好坏在很大程度上影响着弹丸制导效果。考虑到稳定性和成熟度的因素,目前智能弹药中普遍采用电动舵机,但该类舵机在使用时产生的磁场会对电磁传感器产生干扰,同时也存在着精度低、带宽窄和体积重量大等缺陷,尤其是当用于某些依靠旋转稳定的高旋制导弹药,使得电动舵机的集成设计面临着巨大挑战。基于压电材料制成的新型智能结构通常具有控制带宽大、响应速度快、结构简单以及构
学位
铯铅基卤化物全无机钙钛矿材料CsPbX3(X=Br,I)具有出色的光物理特性,例如长的载流子扩散长度、大的光吸收系数和可调节的带隙,同时具有优异的光和热学稳定性,因此作为一类高性能光敏材料引起了广泛的关注。然而,当前理想的高效全无机钙钛矿材料(如CsPbI3和CsPbI2Br)正面临着结构相的不稳定问题:其光敏型黑相(α,β或γ相)在室温下会自发转变为非光敏型黄相(δ相)。黑相钙钛矿的稳定和高质量
学位
热电材料是一种依靠自身即可实现电能和热能相互转换的新型功能材料。由热电材料制成的器件具有体积小、无传动部件、无噪音、无污染等优点,在太阳能发电,废热回收以及半导体制冷等新能源领域有广阔应用前景。目前,人们对热电材料的研究,主要集中在如何提升材料的能量转换效率上,对热电材料力学问题的关注程度相对不足,极大地限制了热电材料在工程实际中的运用。大多数热电材料都是脆性高而韧性低的半导体材料,其自身的转换性
学位
黑磷(BP)是一种具有直接带隙的二维(2D)材料,其可调的带隙填补了石墨烯和二维过渡金属硫化物(TMDCs)之间的带隙空白,同时黑磷还具有较高的电荷载流子迁移率。黑磷独特的褶皱状晶体结构导致了沿锯齿(Zigzag,ZZ)和扶手椅(Armchair,AC)方向的面内各向异性,使其具有了独特的光电响应。研究表明黑磷的光电特性可以通过丰富的力电磁的方法进行调节。这些特性使黑磷成为从可见光到中红外甚至太赫
学位
纤维增强树脂基复合材料具有很多优点因此被广泛应用于各个工业领域,但是其环境耐久性是其在应用中面临的一个重要挑战。高湿度、紫外线辐射和温度变化等环境会导致聚合物材料的性能发生严重下降,因此需对树脂基复合材料在各种环境下的长期力学性能进行评估,以确保其在使用寿命内足够的安全可靠。本文首先研究了树脂基复合材料的吸湿和循环吸脱湿行为,在此基础上研究了复合材料的湿热老化规律,然后对它们的自然老化规律以及实验
学位
推广和实施生产者责任延伸制度(Extended Producer Responsibility,EPR)是解决当前我国资源和环境问题的重要国策。再制造闭环供应链作为EPR的微观实现机制,其运行的经济和环境效率受到产品可再制造性水平的极大影响。在闭环供应链中,产品可再制造性水平是废旧产品能否进行再制造以及再制造效率的关键影响因素,是生产者责任后向延伸成功实现的源头保证。因此,如何从经济和环境效益角度
学位
光纤-超声检测技术原理是利用光纤传感器接收材料中传播的超声波,通过分析超声波特性确定结构健康状态。目前这种技术广泛应用于建筑、军事、工业制造等领域的结构损伤评估。然而,针对服役于严苛环境的复杂航空航天结构,需进一步开发适用的高精度损伤检测技术。在航空航天结构中,平板是其中非常重要的基础结构。平板结构在长期服役过程中会产生裂纹等微小损伤,微小裂纹在承受外界载荷时会发生扩展形成宏观损伤,降低结构的强度
学位