220GHz多电路集成技术

来源 :电子科技大学 | 被引量 : 1次 | 上传用户:ycl12345
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着近年来半导体技术和高精密微机械加工技术的迅猛发展,以及国家对电子产业的大力投入,太赫兹固态电路技术已经逐渐从实验室阶段走向实际应用阶段,单功能电路已经不能满足实际应用系统对体积、重量、功耗的诸多要求,尤其在航空航天等应用领域,对此的限制更是严苛。多电路集成将是未来太赫兹固态电路发展的必然趋势,针对此技术的研究对太赫兹固态系统走向小型化、芯片化、实用化具有着重要深远的意义。
  本文围绕太赫兹多电路集成技术展开,以高速通信小型化接收机的实现为牵引,对构成太赫兹接收机射频前端的两种有源电路(分谐波混频器和三倍频器)和两种无源电路(分支波导定向耦合器和伪椭圆波导带通滤波器)开展了深入研究,提出了一种新型220GHz多电路集成架构,实现了电路理论和性能的双重突破,基于此电路搭建了太赫兹小型化射频前端,并成功完成了20GHz超宽带实时信号盲检测和12.8Gbps高速通信数据传输实验。本文主要内容包括以下三个方面:
  (1)太赫兹接收机关键电路技术。接收机的关键电路主要指的是分谐波混频器电路及其本振驱动源电路(倍频器)。分谐波混频器在射频前端系统中实现频率变换的功能,非线性电路的特性使得该电路会直接影响到系统的噪声性能。本文从对肖特基势垒二极管物理机理的研究出发,通过研究肖特基结中载流子运动特性,分析了二极管参数和封装寄生参数对变频损耗性能的影响,并建立了混频二极管的精确电磁模型,实现了一种220GHz低损耗分谐波混频器。倍频技术是固态电子学方法产生太赫兹信号的重要技术手段,三倍频器是组成混频器本振驱动源链路的高效途径。同样的,作为非线性电路,变容二极管是倍频器的核心,本文通过深入的理论研究,分析了变容二极管参数对三倍频器性能的影响,建立了变容二极管倍频性能分析模型,实现了一种110GHz高效三倍频器,作为220GHz分谐波混频器的本振驱动源。
  (2)太赫兹多电路集成技术。高性能的接收机前端离不开无源电路,本文着重研究了太赫兹分支波导耦合器和伪椭圆波导带通滤波器。多电路集成所面临的最大问题是无法对每个有源电路进行有效的检测,而耦合器的引入解决了这个问题。本文对传统分支波导耦合器的理论进行了深入分析,在传统的奇偶模分析法的基础上,创新性的引入模式匹配法,提出了一种精确高效的耦合器建模方法。与传统方法相比,该方法引入了波导不连续性所带来的影响,避免了传统方法在太赫兹频段使用所带来的巨大误差。在理论创新的基础上,本文还提出了一种新型的耦合器电路,与传统五分支耦合器电路相比,工作带宽相同的条件下,尺寸减小了47%。同时,为了避免双边带传输所带来的干扰,实现单边带通信传输,本文研究了一种太赫兹频段的伪椭圆模波导带通滤波器,该滤波器的30dB矩形系数为0.71,具有良好频率选择性。最终,本文提出了一种多电路集成架构,作为接收机系统前端,可直接实现单边带传输,还可以随时检测混频器本振驱动源的工作状态。该单模块多电路集成前端与传统多模块连接电路相比,体积减小了90%,重量仅为90g,为高速通信系统小型化接收机的实现打下了坚实的基础。
  (3)太赫兹高速通信小型化接收机实验研究。在相关电路理论的研究取得突破的基础上,本文开展了太赫兹高灵敏度信号探测和高速通信技术研究,构建了220GHz超宽带信号盲检测实验验证系统和高速通信实验验证系统。220GHz信号盲检测系统的可实时检测带宽为20GHz,信号频率分辨率可达1kHz。220GHz高速通信系统采用了双通道并行传输模式,在模数转换器性能受限的情况下,实现了码速率为12.8Gbps的高速数据传输,并验证了相关高清视频业务。
  通过本文的研究,研制了太赫兹多电路集成接收机前端,极大的减小了接收机的体积和重量,同时也验证了太赫兹宽带接收机和高速通信系统未来走向实际应用的可行性,为未来地面短距离大容量通信需求和空间通信的应用奠定了重要的理论和技术基础。
其他文献
随着各国军事力量的不断发展,军用设备燃料后勤保障的便捷性和安全性问题逐渐被各国所重视。目前,航空煤油和轻质柴油因其闪点高、运输和储存安全性能好等特点,在战场上被广泛使用。为了简化燃料后勤保障体系,“战场燃料单一化”即所有的动力装备都必须能使用航空煤油作为燃料受到越来越多的关注。在这方面,国内相关研究起步较晚,与国外相比还存在较大差距。目前,无论国内还是国外,航空煤油在高环境温度、高喷射压力工况下的
学位
RCCI(Reactivity controlled compression ignition)燃烧模式作为一种新型的燃烧模式具有着高燃烧效率,低排放的特点。但是其在中高负荷容易出现过高的压力升高率以及敲缸现象,因此需要引入EGR来缓解这种现象。本文基于激波管实验研究了EGR中的氧气、未完全氧化产物(Incomplete oxidation products, IOP)以及单一组分对于乙醇/正庚烷
学位
作为工业革命的产物,内燃机在推动社会经济发展和改善人民生活水平方面发挥了举足轻重的作用,但同时也带来了能源消耗和环境污染问题。纳米材料作为润滑油添加剂时能够降低活塞环-缸套运动副的摩擦损失、减少磨损;同时还能够缓解P、S等元素造成的污染,相比于传统添加剂有着诸多优点。本文将在此基础上开展纳米添加剂对活塞环-缸套摩擦学特性影响机理研究。  本文首先以油酸作为分散剂,采用磁力搅拌和超声震荡相结合的分散
稀薄燃烧和高压缩比技术具有很大的提高热效率潜力,但这些技术会在缸内形成混合气稀薄、高压的环境,特别是在点燃式内燃机方面,稀薄混合气容易出现点火困难,早期燃烧不稳定等问题。相关研究者借鉴等离子体助燃和电场助燃理论,提出微波辅助点火燃烧技术,该技术可以大幅提高点火时羟基等自由基的浓度,明显改善点火性能。但是研究发现,随着环境压力的升高,微波助燃的效果越来越差,而内燃机的缸内燃烧往往处于高压环境,这使得
目前新兴的数字微流控(Digital Microfluidics, DMF)芯片,主要利用介电润湿效应(Electrowetting of Dielectric, EWOD)操控液滴运动并完成各项操作,该技术凭借其清洁节能、样品消耗少等独特优点,在近十年来迅速成为生化、医学及能源工程等领域的研究热点之一。然而,由于宏观流体和微观流体的流动特性不同,微尺度下基于数字微流控芯片的微液滴的运动过程内在机
叶轴流风机叶片的外形由若干翼型积叠而成,优化翼型可以有效提高风机性能。本文将NACA4412翼型作为研究对象,研究了基于分段贝塞尔曲线的翼型参数化方式,在此基础上采用CFD方法结合遗传算法对翼型的厚度分布与弯度分布实施了优化,分析了优化前后翼型的气动特性及其与攻角、型线特征等因素之间的关系,旨在为翼型型线优化方法提供新的思路与参考依据。  研究了基于分段贝塞尔曲线的翼型参数化方法,结果表明该方法能
基于热流逸效应原理制作的努森压缩机,由温度梯度来驱动介质流动,主要结构由微通道与连接通道组成,相比常规压缩机,可在无运动部件下实现流体介质传输,具有可靠性高、寿命长、传输过程精确可控等优点,在微机械和微流控系统中极具应用前景。研究努森压缩机的流场特征,掌握努森压缩机工作特性及影响规律,是努森压缩机设计与应用的关键。  本文在国内外对努森压缩机研究的基础上,结合努森压缩机的结构特点,针对努森压缩机微
提升电泵是深海采矿管道提升系统中的一个重要设备。其内部流动状况复杂,除了满足基本指标外,还要兼顾尺寸限制。同时,在实际应用过程中碰到了颗粒堵泵、部件磨损严重和振动等情况。因此,研究提升电泵中固液流动规律以及结构模态分析,对指导泵的设计和优化泵的运行工况提供基础。本文主要工作如下:  采用斜流泵三维设计方法,设计了斜流泵,并通过网格数量无关性验证后对斜流泵进行了数值模拟,其结果显示水力性能满足设计要
学位
时域有限差分(Finite-Difference Time-Domain,FDTD)法作为计算电磁学中典型的时域数值方法直接从麦克斯韦方程组出发,不需要进行复杂的矩阵求逆运算,简单直观,易于掌握,因此被广泛的应用在电磁仿真中。然而,FDTD算法的核心是用有限差分项来离散麦克斯韦旋度方程,因此在离散的过程中必然会产生数值色散误差从而直接影响到FDTD算法的计算精度。减小FDTD算法的数值色散误差,不