论文部分内容阅读
随着近年来半导体技术和高精密微机械加工技术的迅猛发展,以及国家对电子产业的大力投入,太赫兹固态电路技术已经逐渐从实验室阶段走向实际应用阶段,单功能电路已经不能满足实际应用系统对体积、重量、功耗的诸多要求,尤其在航空航天等应用领域,对此的限制更是严苛。多电路集成将是未来太赫兹固态电路发展的必然趋势,针对此技术的研究对太赫兹固态系统走向小型化、芯片化、实用化具有着重要深远的意义。
本文围绕太赫兹多电路集成技术展开,以高速通信小型化接收机的实现为牵引,对构成太赫兹接收机射频前端的两种有源电路(分谐波混频器和三倍频器)和两种无源电路(分支波导定向耦合器和伪椭圆波导带通滤波器)开展了深入研究,提出了一种新型220GHz多电路集成架构,实现了电路理论和性能的双重突破,基于此电路搭建了太赫兹小型化射频前端,并成功完成了20GHz超宽带实时信号盲检测和12.8Gbps高速通信数据传输实验。本文主要内容包括以下三个方面:
(1)太赫兹接收机关键电路技术。接收机的关键电路主要指的是分谐波混频器电路及其本振驱动源电路(倍频器)。分谐波混频器在射频前端系统中实现频率变换的功能,非线性电路的特性使得该电路会直接影响到系统的噪声性能。本文从对肖特基势垒二极管物理机理的研究出发,通过研究肖特基结中载流子运动特性,分析了二极管参数和封装寄生参数对变频损耗性能的影响,并建立了混频二极管的精确电磁模型,实现了一种220GHz低损耗分谐波混频器。倍频技术是固态电子学方法产生太赫兹信号的重要技术手段,三倍频器是组成混频器本振驱动源链路的高效途径。同样的,作为非线性电路,变容二极管是倍频器的核心,本文通过深入的理论研究,分析了变容二极管参数对三倍频器性能的影响,建立了变容二极管倍频性能分析模型,实现了一种110GHz高效三倍频器,作为220GHz分谐波混频器的本振驱动源。
(2)太赫兹多电路集成技术。高性能的接收机前端离不开无源电路,本文着重研究了太赫兹分支波导耦合器和伪椭圆波导带通滤波器。多电路集成所面临的最大问题是无法对每个有源电路进行有效的检测,而耦合器的引入解决了这个问题。本文对传统分支波导耦合器的理论进行了深入分析,在传统的奇偶模分析法的基础上,创新性的引入模式匹配法,提出了一种精确高效的耦合器建模方法。与传统方法相比,该方法引入了波导不连续性所带来的影响,避免了传统方法在太赫兹频段使用所带来的巨大误差。在理论创新的基础上,本文还提出了一种新型的耦合器电路,与传统五分支耦合器电路相比,工作带宽相同的条件下,尺寸减小了47%。同时,为了避免双边带传输所带来的干扰,实现单边带通信传输,本文研究了一种太赫兹频段的伪椭圆模波导带通滤波器,该滤波器的30dB矩形系数为0.71,具有良好频率选择性。最终,本文提出了一种多电路集成架构,作为接收机系统前端,可直接实现单边带传输,还可以随时检测混频器本振驱动源的工作状态。该单模块多电路集成前端与传统多模块连接电路相比,体积减小了90%,重量仅为90g,为高速通信系统小型化接收机的实现打下了坚实的基础。
(3)太赫兹高速通信小型化接收机实验研究。在相关电路理论的研究取得突破的基础上,本文开展了太赫兹高灵敏度信号探测和高速通信技术研究,构建了220GHz超宽带信号盲检测实验验证系统和高速通信实验验证系统。220GHz信号盲检测系统的可实时检测带宽为20GHz,信号频率分辨率可达1kHz。220GHz高速通信系统采用了双通道并行传输模式,在模数转换器性能受限的情况下,实现了码速率为12.8Gbps的高速数据传输,并验证了相关高清视频业务。
通过本文的研究,研制了太赫兹多电路集成接收机前端,极大的减小了接收机的体积和重量,同时也验证了太赫兹宽带接收机和高速通信系统未来走向实际应用的可行性,为未来地面短距离大容量通信需求和空间通信的应用奠定了重要的理论和技术基础。
本文围绕太赫兹多电路集成技术展开,以高速通信小型化接收机的实现为牵引,对构成太赫兹接收机射频前端的两种有源电路(分谐波混频器和三倍频器)和两种无源电路(分支波导定向耦合器和伪椭圆波导带通滤波器)开展了深入研究,提出了一种新型220GHz多电路集成架构,实现了电路理论和性能的双重突破,基于此电路搭建了太赫兹小型化射频前端,并成功完成了20GHz超宽带实时信号盲检测和12.8Gbps高速通信数据传输实验。本文主要内容包括以下三个方面:
(1)太赫兹接收机关键电路技术。接收机的关键电路主要指的是分谐波混频器电路及其本振驱动源电路(倍频器)。分谐波混频器在射频前端系统中实现频率变换的功能,非线性电路的特性使得该电路会直接影响到系统的噪声性能。本文从对肖特基势垒二极管物理机理的研究出发,通过研究肖特基结中载流子运动特性,分析了二极管参数和封装寄生参数对变频损耗性能的影响,并建立了混频二极管的精确电磁模型,实现了一种220GHz低损耗分谐波混频器。倍频技术是固态电子学方法产生太赫兹信号的重要技术手段,三倍频器是组成混频器本振驱动源链路的高效途径。同样的,作为非线性电路,变容二极管是倍频器的核心,本文通过深入的理论研究,分析了变容二极管参数对三倍频器性能的影响,建立了变容二极管倍频性能分析模型,实现了一种110GHz高效三倍频器,作为220GHz分谐波混频器的本振驱动源。
(2)太赫兹多电路集成技术。高性能的接收机前端离不开无源电路,本文着重研究了太赫兹分支波导耦合器和伪椭圆波导带通滤波器。多电路集成所面临的最大问题是无法对每个有源电路进行有效的检测,而耦合器的引入解决了这个问题。本文对传统分支波导耦合器的理论进行了深入分析,在传统的奇偶模分析法的基础上,创新性的引入模式匹配法,提出了一种精确高效的耦合器建模方法。与传统方法相比,该方法引入了波导不连续性所带来的影响,避免了传统方法在太赫兹频段使用所带来的巨大误差。在理论创新的基础上,本文还提出了一种新型的耦合器电路,与传统五分支耦合器电路相比,工作带宽相同的条件下,尺寸减小了47%。同时,为了避免双边带传输所带来的干扰,实现单边带通信传输,本文研究了一种太赫兹频段的伪椭圆模波导带通滤波器,该滤波器的30dB矩形系数为0.71,具有良好频率选择性。最终,本文提出了一种多电路集成架构,作为接收机系统前端,可直接实现单边带传输,还可以随时检测混频器本振驱动源的工作状态。该单模块多电路集成前端与传统多模块连接电路相比,体积减小了90%,重量仅为90g,为高速通信系统小型化接收机的实现打下了坚实的基础。
(3)太赫兹高速通信小型化接收机实验研究。在相关电路理论的研究取得突破的基础上,本文开展了太赫兹高灵敏度信号探测和高速通信技术研究,构建了220GHz超宽带信号盲检测实验验证系统和高速通信实验验证系统。220GHz信号盲检测系统的可实时检测带宽为20GHz,信号频率分辨率可达1kHz。220GHz高速通信系统采用了双通道并行传输模式,在模数转换器性能受限的情况下,实现了码速率为12.8Gbps的高速数据传输,并验证了相关高清视频业务。
通过本文的研究,研制了太赫兹多电路集成接收机前端,极大的减小了接收机的体积和重量,同时也验证了太赫兹宽带接收机和高速通信系统未来走向实际应用的可行性,为未来地面短距离大容量通信需求和空间通信的应用奠定了重要的理论和技术基础。