【摘 要】
:
随着能源危机和环境恶化的不断加剧,金属空气电池和燃料电池等清洁能源技术因其巨大的应用前景而不断革新。氧还原反应(ORR)是这些电池技术中重要的反应。然而,ORR的动力学迟缓,是这些电池进一步发展的桎梏。目前,铂基催化剂由于其高的ORR活性而备受关注,但其匮乏的储备和不菲的价格严重影响了它们的大范围商业化。金属酞菁材料,是典型的M-N4中心大环结构化合物,其大环上带有18个π电子可以保证电子的快速传
论文部分内容阅读
随着能源危机和环境恶化的不断加剧,金属空气电池和燃料电池等清洁能源技术因其巨大的应用前景而不断革新。氧还原反应(ORR)是这些电池技术中重要的反应。然而,ORR的动力学迟缓,是这些电池进一步发展的桎梏。目前,铂基催化剂由于其高的ORR活性而备受关注,但其匮乏的储备和不菲的价格严重影响了它们的大范围商业化。金属酞菁材料,是典型的M-N4中心大环结构化合物,其大环上带有18个π电子可以保证电子的快速传输,从而成为一种很有前途的替代贵金属ORR催化剂的材料。在大环酞菁催化剂中,酞菁铁(Fe Pc)由于具有较高的ORR活性而备受关注,但催化稳定性却不理想。基于以上思路,本论文采用酞菁铁和酞菁钴,通过简单的溶剂热和焙烧的方法构筑了具有金属元素非均匀分布的异质结构酞菁铁/酞菁钴(FePc/CoPc Heterostructure,FePc/CoPc HS)催化剂。通过系统的方法表征了FePc/CoPc HS的ORR性能,并组装测试了锌空气电池。此外,结合光谱学表征和密度泛函理论计算揭示了合成的酞菁基催化剂性能优异的原因。本文的主要研究成果如下:(1)采用简单的溶剂热和低温焙烧的方法,成功制备了FePc/CoPc HS电催化剂,方法简单,容易实施,重复性好。采用XRD、SEM、EDS和TEM等表征手段,证明所制备的FePc/CoPc HS微米棒呈现两端为Fe元素,中间为Co元素分布的异质结构。(2)对所得的FePc/CoPc HS催化剂进行电催化性能测试,结果显示,相比于Fe Pc,通过异质结构的设计的FePc/CoPc HS催化剂展现出更高的动力电流密度(提高了一倍)和更持久的稳定性(增加了20.5%)。此外,以FePc/CoPc HS作为阴极催化剂组装锌空气电池实现了高功率密度(128 m W cm-2)和高开路电压(>1.4 V)。(3)通过光谱学和密度泛函理论对催化剂活性位点的电子结构进行分析,表明异质结构的设计能够诱导使得延长Fe-N键长,Fe位点周围的电子密度增加,HOMO-LUMO分子能级轨道间隙减小。以上因素共同作用,使FePc/CoPc HS具有增强的ORR活性和耐久性。
其他文献
Cu/Al复合结构是一种十分具有应用前景的实现轻量化、降低经济成本的方式。但Cu/Al物理性能差异较大,难以获得高质量接头。课题组根据Cu/Al焊接过程中存在的难点,结合磁脉冲焊接和半固态钎焊的特点,提出了一种磁脉冲辅助半固态钎焊的新方法,用于Cu/Al异种金属管件的无钎剂钎焊。在磁脉冲力的作用下,半固态钎料受到外管的高速碰撞、挤压,内外管壁则受到半固态钎料中固相颗粒的挤压、剪切作用,使基体表面的
压电材料为一类可以实现力与电相互转化的材料,在能量收集、换能器、致动器等元器件领域有着广阔的开发和应用前景。由于可穿戴器件对于轻薄、柔韧材料的特殊需求,轻质、柔性的高分子压电材料受到广泛关注。在材料结晶行为以及结构的影响下,高分子压电材料的压电性能通常弱于无机陶瓷类压电材料。因此,在保持高分子压电材料柔性的基础上提高其压电性能是智能可穿戴器件用压电材料研究的重点。本文提出了一种基于静电纺丝工艺制备
聚对苯二甲酸-己二酸-丁二醇酯(PBAT)是当下最具潜力的生物可降解材料之一,但高昂的价格和较差的机械性能严重限制了它的应用。黄麻纤维作为随处可见的天然纤维,具有轻质高强、廉价环保的特点。采用黄麻纤维来增强PBAT得到PBAT/黄麻纤维复合材料,可以在保持材料生物可降解性的基础上有效提升其力学性能,并显著降低其密度及成本。然而,黄麻纤维具有较高的亲水性与吸水率,因而与树脂基体的相容性较差;此外,P
因具有超短脉冲宽度和超高峰值功率密度等独特优势,超快激光与透明材料相互作用是光学领域和材料领域的热点研究方向之一;与传统机械加工方法相比,超快激光精密微加工方法在精度等方面具有显著优势。针对激光陀螺用微晶玻璃的高精度切割、钻孔等加工需求,本文系统研究了利用超快激光微加工近零膨胀微晶玻璃时,扫描速度等加工参数对加工质量的影响;通过工艺参数优化,获得高质量的切割和钻孔加工面。为了探索高质量加工的根本原
氢气是解决能源危机问题的重要突破口。然而由于其易燃易爆等性质,在储存、运输和使用过程中都存在相当大的安全隐患。气体检测成为了解决这一问题的关键,Zn O气敏传感器凭借其灵敏度高、制备简单、成本低、物理化学性能稳定等特点,是最常见的传感器之一。选择性是衡量气敏传感器性能的重要指标之一,只有精准的检测在环境气氛中的目标气体才能使传感器拥有较高的实用性及商业价值,因此提高气敏传感器的选择性是本文的研究重
由于碳基材料易合成,物理化学性质稳定和原料丰富,它们被认为是碱金属离子电池最具潜力的负极材料。然而,有限的活性位点阻碍了容量的提升,而且大的离子半径(如钠离子、钾离子)极大地限制了离子在电极材料内部的快速扩散,造成了缓慢的反应动力学。因此,如何对碳基材料进行结构设计以实现高效的电化学性能,是实现碱金属离子电池进一步应用的挑战。在本课题中,本文分别通过对碳基纳米片进行复合结构和微观结构调控设计,并作
经过近10年的发展,钙钛矿太阳能电池的效率已经从最初的3.8%提升到目前的25.5%。钙钛矿太阳能电池可以分为有机-无机杂化钙钛矿太阳能电池和无机钙钛矿太阳能电池两种。前者虽然效率较高,但是热稳定性比较差。后者具有很高的热稳定性,且非常适合制备硅-钙钛矿叠层太阳能电池。虽然目前效率较低,但是研究价值和实用性较高。目前无机钙钛矿薄膜制备工艺相对复杂,晶体质量不高,且电池通常采用昂贵且不稳定的有机小分
镓酸镁尖晶石材料具有优异的光学性能和介电性能,在光学通讯、固体激光器、光致发光、系统集成光电领域拥有广泛的应用前景。然而,目前的研究均集中在粉体、微波介电陶瓷以及单晶,对镓酸镁尖晶石固溶体透明陶瓷的研究尚未开展。本论文采用固相反应法合成颗粒细小均匀的纯相粉体,然后通过干压结合冷等静压成型出陶瓷坯体,采用无压预烧结合热等静压烧结制备了镓酸镁尖晶石固溶体透明陶瓷。同时,结合晶体结构分析、键价模型与实验
环境污染和能源危机是当今人类社会发展需要解决的重大难题,新型可持续能源装置的开发已经迫在眉睫。燃料电池因具有环境友好、清洁高效等优势被认为是最有前景的能源装置之一。其中,氧还原反应(ORR)作为重要的半电极反应,其缓慢的动力学限制了燃料电池的进一步发展。目前,铂基催化剂是唯一可行的商业化ORR电催化剂,但是贵金属铂的稀缺性、高成本、低稳定性限制了其大规模应用。最近,高效且廉价的非贵金属基催化剂快速
在能源危机和环境污染的背景下,发展新型能源转换器件已经成为社会快速发展的迫切需求之一。可充锌空气电池作为一种新型的能源转换器件,具有低成本、高储量和高能量密度等优势而受到科学研究者们的关注。可充锌空气电池的空气电极在放电过程中发生氧还原反应(ORR),在充电过程中发生析氧反应(OER)。然而OER和ORR的动力学反应过程较为缓慢,这大幅度降低了可充锌空气电池的能量转换效率。所以,合理设计适用于OE