论文部分内容阅读
随着现代汽车对乘坐舒适性和行驶安全性的要求越来越高,设计一个具有良好综合性能的悬架成为现代汽车研究的一个重要课题。传统的被动悬架系统的弹性元件和阻尼元件的刚度值和阻尼值是固定的,在汽车行驶过程中无法随路面状况、载荷等因素的变化而变化,所以有必要设计一种不同于被动悬架的新型悬架。主动悬架是随着现代控制理论和电子技术的发展而发展起来的,可以随汽车的行驶状态而自适应地改变其刚度和阻尼参数,具有优良的减振性能和操纵稳定性,是未来汽车悬架研究的一个重要方向。对主动悬架的研究主要从两个方面展开:一是四分之一主动悬架模型结构形式的研究,采用不同的控制方法,以达到较好的控制效果,并对汽车主动悬架控制系统进行了深入的研究。二是鉴于汽车结构和运动方式十分复杂,四分之一悬架模型仅仅考虑了汽车的垂直运动情况,为了能更好的反映主动悬架对俯仰、侧倾运动的影响,又采用虚拟样机建立了整车模型,进行了整车的平顺性实验台实验。首先,对悬架系统中几种控制方法进行了理论分析和算法研究,包括PID控制,模糊控制和模糊自适应PID控制等。其次,在理论研究的基础之上,分别以1/4车二自由度悬架系统模型为控制对象进行了主动悬架控制算法的计算机仿真。仿真试验的结果表明,对于不同的路面激励,各个控制算法都明显地抑制了车体振动,其中以模糊控制和模糊自适应PID控制方法效果最好。因此,车辆主动悬架系统采用这些控制是可行的和有效的。然后,本论文采用ADAMS/Car和MATLAB/Simulink联合仿真方法,分别对装配被动悬架和装配主动悬架整车的平顺性进行了分析。在ADAMS/Car环境中建立了装配可控悬架的整车虚拟样机模型;并利用MATLAB/Simulink建立主动悬架控制模型,考虑到控制器结构以及传感器个数,采用了上述模糊控制方法。联合ADAMS/Car中建立的整车虚拟样机模型和MATLAB/Simulink中建立的控制器模型进行了仿真。仿真结果表明,装备了主动悬架的整车平顺性比采用被动悬架的性能要好。联合仿真避免了建立整车动力学方程及推导传递函数,为复杂机械系统的控制与仿真提供了新思路。同时,采用虚拟样机协同设计、调试和试验的方法,同传统的设计方法相比有明显的优势,可以大大地提高设计效率,缩短开发周期,降低开发产品的成本,获得优化的系统整体性能。