航改燃机短环形燃烧室天然气低NOx燃烧研究

来源 :中国科学院大学(中国科学院工程热物理研究所) | 被引量 : 0次 | 上传用户:cet1979
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
航改型燃气轮机被广泛用于舰船动力、地面发电、管道驱动等场景。我国自上世纪开始从国外采购了大量某军用航空发动机,这些发动机经过几轮大修,已经接近退役,将这些退役航空发动机改造为燃气轮机具有巨大的经济价值。航改型燃气轮机作为商用产品,必须遵守日益严格的污染物排放限制要求,其中监管部门对NOx排放的限制尤其严格,降低NOx排放也是航空发动机改造为燃气轮机的主要问题之一。由于原型机的燃烧室轴向尺寸很小,很难在保证燃烧效率的同时大幅降低NOx排放,本文拟在不改变燃机机匣的前提下,采用先进燃烧方式来实现低NOx排放。本文首先采用燃料加湿稀释扩散燃烧方式对该航空发动机燃烧室进行低NOx改造,该技术在一定加湿比例的情况下,可降低NOx和CO排放。在重新1设计了燃料喷嘴的基础上,对三维模型进行网格划分和数值模拟,模拟结果的定性分析表明,在一定燃料加湿比例条件下,该燃烧室采用此燃烧技术能够大幅降低NOx的排放浓度,同时CO排放浓度也较低,但NOx仍然无法达到国标要求的排放水平。为此,经过调研比较,对燃烧室火焰筒进行了改造,通过高速射流和几何结构引导的方式,尝试在原型机有限的机匣空间内实现柔和燃烧。但是数值模拟的结果表明,在原型机有限的空间内,仅重新设计火焰筒而不改动机匣,无法获得温度场均匀、火焰峰值温度低的柔和燃烧。这表明,在航空发动机压力高、流量大、速度高、尺寸小等不利因素影响下,实现柔和燃烧的难度较大。最后,在该原型机上应用微混燃烧技术,探究是否能进一步降低污染物排放。在不改变机匣的尺寸和结构的情况下,实现了微混燃烧喷嘴的布置,改造后的单喷管内径为5mm,共计2352根,每根喷管上游均匀开设4个燃料孔,燃料空气形成90°交叉射流掺混。数值模拟结果表明,头部微混燃烧当量比为0.64时,全局最高温度为2069K,相比燃料加湿燃烧,其下降程度较为可观。由于全局燃烧温度较低,其出口 NOx 仅 7.5ppmvd@15%O2,CO 为 9.4 ppmvd@15%O2。尽管头部微混燃烧获得了均匀温度场,还需要进一步通过掺混孔的优化来改善出口温度分布。对于本文研究的短环形燃烧室,在不改变机匣结构,仍然采取原型机的环形燃烧室的情况下,通过燃料加湿燃烧能够获得较低的NOx排放水平;在该机匣空间内,不能实现高压高负荷柔和燃烧;微混燃烧方案能够实现稳定燃烧,燃烧温度场均匀,NOx排放低,是将航空发动机短环形燃烧室改造为低NOx燃烧室的具有潜力和可行的燃烧方式,研究结果也发现需要进一步通过掺混孔的优化以改善出口温度分布。
其他文献
漏洞重现是调试软件缺陷的关键步骤,基于目前的技术栈,仍需要耗费大量的时间来手工完成。尽管崩溃报告在软件发生错误时被捕获,并发送给软件供应商,但它几乎不能用作漏洞重现。主要的原因是,来自软件用户的崩溃报告通常缺少许多关键因素(例如,软件安装,触发方法),这使得漏洞重现变得更为困难。更糟糕的是,软件可配置选项(即,一个软件系统被定制以在特定上下文或场景中使用的能力)的不确定性,对重现仅存在于某些特定的
一名男生进入某重点高中后,学习勤奋努力,高二时进入了年级前一百名。到了高三,男生更努力了,但成绩反而下降了。男生不服输,每天都学习到很晚,但成绩一次不如一次。班主任也弄不清哪里出了问题。最后,男生由家长陪同接受了心理辅导,他的成绩才逐渐恢复正常。为什么男生的成绩会下降?为什么接受心理辅导后,他的成绩恢复正常了?
期刊
仿生学研究发现表面微结构可以改变边界层结构,抑制湍流猝发频率和强度,降低表面摩擦阻力,为运动物体气动性能优化提供了新思路,其中,微沟槽减阻技术因不需要消耗其它能量同时具有很好的减阻效果成为研究的热点。本文以NACA65-010叶型为对象,对于沿流向布置的对称V型和梯形沟槽结构,分别在可压缩与不可压来流条件下,采用实验和数值计算相结合的研究方法开展了表面微沟槽对压气机叶栅气动性能影响研究及减阻流动机
近年来,各种类型无人机在各方面的应用发展迅速。其中,固定翼无人机在起飞时易受地形等条件限制,因此亟需开发一种能够适用于不同复杂环境、可靠性强、成本低的辅助起飞方式。压缩空气弹射起飞优势明显,具有结构简单、运维费低、能量密度高、适用场景广且对环境无污染等优点。本文以适用于固定翼无人机的压缩空气弹射系统为研究对象,建立热力学模型,分析自变量参数对弹射性能的影响规律,对主要的零部件进行设计,使用AUTO
排气系统是燃气轮机、汽轮机组中的重要组成部件,主要有两个作用:一个是回收末级透平的余速动能,减小透平出口背压,增加透平焓降,提高透平出功;二是引导气流流入下游。船用燃气轮机、E级及之前的重型燃机和大功率汽轮机多采用单侧径向排气系统,气流由末级透平流出,沿轴向进入排气系统,在排气蜗壳中转弯90°后流出,气流方向发生翻转,形成复杂的漩涡,并且随工况改变明显。无论是舰船开经济航速下低负荷运行的燃机还是电
微槽群热沉相变换热技术由于具有取热热流密度高、无需外加功耗等优点,被认为是当前解决高性能半导体芯片换热的有效手段之一。微槽群热沉表面加工有微米尺寸的矩形微通道阵列,液体工质在其矩形槽道所产生的毛细压力梯度作用下可沿微槽方向迅速流动。相较于常规换热器,微槽群热沉相变换热技术拥有更好的热均匀性和更低的热阻。目前学者们大多数认为微槽群热沉的传热性能与其毛细润湿特性息息相关,因此对微槽群热沉的毛细性能展开
胺类物质作为生物质燃料中的重要组分,近年来关于胺类燃料在燃烧领域的研究越来越受到大家的重视。采用精密准确的实验设备对胺类燃料的燃烧行为进行实验探测,同时,建立可信的动力学模型对于含氮污染物及氮元素迁移路径进行详细分析,这都将为降低生物质燃料在利用过程中含氮污染物的排放和扩大生物质燃料市场提供理论指导。本文选取两种典型的胺类燃料,即正丙胺(NPA)和N,N-二甲基甲酰胺(DMF),作为研究对象。采用
空气涡轮火箭(Air-Turbo-Rocket,以下简称为ATR)发动机是一种速域宽、空域大的动力系统,在现代化空中作战系统中占有一席之地。ATR发动机的燃烧室布置在涡轮之后,组织来自涡轮的内涵富燃燃气与来自压气机的外涵空气掺混、燃烧,保证两股气流在有限的燃烧室空间内充分混合对提升ATR发动机的性能至关重要。波瓣混合器作为一种高效掺混装置,在ATR发动机燃烧室内具有很好的应用前景。本文主要采用数值
燃气轮机性能模拟很大程度上依赖于对部件行为的详细了解。燃气轮机部件特性曲线的质量,尤其是压气机特性曲线的质量,对性能模拟的准确性至关重要。然而由于技术保密等原因,在对现有燃气轮机进行性能分析时,其压气机特性曲线通常是未知的,如何利用已知几何数据产生压气机特性曲线十分关键。另一方面,对于给定的压气机特性曲线,如果表达方法选取不当,则会造成应用不便、精度过低、难以收敛等问题。本文以此为出发点,分别利用
天然气发电作为目前较为清洁的发电方式,备受瞩目。燃气蒸汽联合循环发电具有启停快、排放低、效率高的特点,是当前天然气发电的主要技术。进一步提高燃气轮机联合循环的效率,降低排放仍然是热力循环研究的重要内容。本文以9HA.02燃气轮机联合循环技术参数为基准,模拟分析了 H级燃气轮机冷却水平下准一维透平冷却模型中关键参数对联合循环性能的影响,并对模型中的参数进行了不确定性分析,开展了燃气轮机新技术对联合循