基于工况的混合动力行星轮系接触疲劳分析与优化

来源 :重庆理工大学 | 被引量 : 0次 | 上传用户:fullsfulls
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
行星轮系作为一种新型混合动力汽车传动系统的关键部件,因其传动效率高、传动比范围广和承载能力强等优势,成为近年来新能源汽车领域的研究热点之一。混合动力行星轮系可实现改变转速、转矩与驱动方向等作用,能够满足车辆不同循环工况的需求,但由于齿轮内部非线性激励丰富,齿轮副间承受载荷较为复杂,使其容易发生齿轮接触疲劳破坏,影响齿轮传动性能,导致车辆安全性能大大降低。为了提升混合动力汽车的可靠性,与保证驾乘人员的人身安全,有必要基于实际循环工况研究分析混合动力行星轮系的接触疲劳情况,主要包括以下方面:首先,根据行星轮系载荷分布特征,确定了混合动力行星轮系接触疲劳载荷谱编制方案;基于典型循环工况进行特征值统计与分析,制定了混合行星轮系工作模式切换决策,并结合车辆行驶过程中纵向受力分析,建立了混合动力行星轮系的工况模型,通过仿真分析得出需求扭矩、转速与时间历程的关系,结合有限元仿真分析与试验分析的需求,编制了接近实际循环工况的接触疲劳载荷谱,为后续接触疲劳分析提供了理论基础。其次,分析了行星轮系结构特点,并建立了行星轮系齿轮传动模型,利用有限元方法对行星轮系进行齿面接触应力分析,确定了齿面危险故障部位,并仿真预测分析了接触疲劳寿命值,同时通过名义应力法与线性疲劳累积损伤理论计算得到行星轮系接触疲劳寿命值,与仿真结果分析对比,验证了仿真分析在随机载荷下预测行星轮系接触疲劳寿命的可行性。再次,搭建了混合动力行星轮系接触疲劳可靠性试验台架,按照操作流程运行试验,分析与总结了试验结果中行星轮系齿轮损坏情况,与行星轮系接触疲劳寿命有限元仿真分析结果对比,验证了行星轮系动力学模型的可靠性,为下文齿形优化提供了重要依据。最后,结合行星轮系接触疲劳有限元仿真与试验分析结果的一致性,针对存在齿面受载分布不均、边缘应力集中等问题,提出了齿形优化方法的必要性,同时介绍了齿廓与齿向修形的理论与方法,基于微观修形软件对行星轮系进行齿向修形,并将齿形优化前后的结果对比,改善了行星轮系齿面接触应力分布不均衡,提高了行星轮系的承载能力,避免了应力集中,有利于延长使用寿命,证明了齿形优化方法的有效性。
其他文献
面对国际市场的经济性要求和日益严苛的轻量化需求,复合材料凭借其独特的优势广泛应用于各领域。在航空航天领域中,复合材料逐渐替代传统的航空材料。连续纤维增强材料作为复合材料的一种,其可设计强,通过铺层优化可以充分发挥出材料的优势,进而达到减重增益的效果。然而纤维增强材料因其组分材料的各向异性和非均匀性等特点,会增加设计变量的离散性和铺层信息规模,提高了优化设计的难度。同时,在进行减重优化后可能会造成结
地震、飓风以及洪水等灾难性事件的频繁发生会严重影响工程结构的健康状态并诱发潜在的危及生命的情况。这些外力的影响在设计之初是不容易被预测到的。由于这些原因,近年来被称为结构健康监测(SHM)的技术已经出现,为工程学科的不同分支开辟了新的研究领域。结构健康监测的主要目的是在结构的使用寿命内检测结构或材料的性能退化程度。SHM系统中包含有大量的节点阵列,这些节点连续地监测一定数量的传感器,根据所监视传感
伴随网络时代的快速发展,汽车与通信、信息等多领域的跨界融合迎来了汽车行业的智能网联化时代。智能联网的加入不仅提高了驾驶员的驾驶体验感,减缓了驾驶员的驾驶疲劳,同时也降低了汽车事故的发生。但汽车在行驶过程中遇到ECU被攻击时,则可能面临部分ECU失控影响驾乘人员安全,或在停车时被控制解锁造成车主财物损失等诸多问题。目前,引导汽车电子软件发展的AUTOSAR组织通过E2E(ECU to ECU)通信防
本文以某国产品牌SUV轿车为研究对象,运用汽车高频噪声分析方法——统计能量分析法(Statistical Energy Analysis,SEA)进行声压级分析,对样车进行高频建模,确定了车内各个部件对驾驶员和后排乘客的噪声贡献量并对贡献量较大的部件进行声学包优化,对贡献量较小的部件进行降本方案设计,最终使整车声学包重量减轻5kg,驾驶员和后排乘客耳旁的噪声声压级降低2.3d B。具体研究工作如下
近些年来,配备自动变速器的乘用车占比逐渐增高,其中DCT(Dual Clutch Transmission)变速器是比较热门的一种新型变速器,越来越受到各大汽车公司青睐。伴随而来的问题是DCT变速器易产生敲击噪声,变速器敲击噪声是汽车传动系统中一种主要的噪声,具有噪声级跳跃和宽频带现象,容易造成驾乘人员的烦躁,已成为影响整车品质的重要问题之一。国内对于手动变速器齿轮敲击的研究已经较为全面,但对于D
路径规划模块是无人驾驶技术的重要组成部分,行为决策和轨迹规划作为路径规划模块中的关键技术,是无人车安全行驶的重要保障。针对无人车在多车道复杂变道公路场景中的行驶安全性、乘坐舒适性和通行高效性等方面的需要,提出了一种多约束局部路径规划方法,为无人车规划出一条安全且舒适的行车轨迹。论文的研究内容主要如下:首先针对无人车在多车道结构化复杂公路场景中的行驶问题,提出了一种有效的决策方法,使得无人车在道路行
随着计算机信息处理、人工智能、大数据、传感器等技术的快速发展,智能化、自动化在各个领域迅速发展,无人驾驶汽车的研究成为热门。轨迹跟踪控制作为无人驾驶汽车的最后一道技术,也是最为关键的一步,是无人驾驶车辆性能的主要评价标准和体现形式。因此,研究轨迹跟踪控制,找出能够快速、稳定地跟踪参考轨迹的控制策略,对实现无人驾驶有重要的实际意义。文章对模型预测控制(Model Predictive Control
配电箱金属表面腐蚀检测与腐蚀等级分类,可以协助配电箱维护人员做出及时的判断并进行相关的防腐处理。目前存在的金属表面腐蚀检测方法较为繁琐,耗时、耗力且对于操作人员的技术要求较高,很难快速得到较为准确的金属表面腐蚀等级信息。近年来作为深度学习算法代表之一的卷积神经网络在数字图像及视频处理方向取得了巨大成功,为本文利用深度学习对配电箱金属表面腐蚀等级检测提供了思路。本文配电箱金属表面腐蚀图像样本来自于湖
汽车智能化产业逐年快速发展,为汽车技术面临的各方面挑战提供了更多高效且智能化的解决方案。近年来,汽车主动避撞技术作为汽车安全领域的关键技术之一,已成为改善和解决车辆碰撞事故的主要手段。然而面对复杂多变的真实交通环境,单一纵向制动的汽车避撞系统显然不能覆盖所有的危险事故场景,因此主动避撞技术需针对多发典型工况细化研究,以应对更多危险事故场景。在日常驾驶环境中前车危险切入极易发生追尾和斜角碰撞,此类工
增材制造技术已经成为世界工业制造界的一颗新星,这一领域集合了新兴材料研发技术,计算机测控等前沿技术,融合发展成为热门的先进制造技术学科。金属构件的增材制造技术难点主要集中在成形结构的宏观、微观组织结构的调控。本文构建了激光能量辅助等离子弧载粉增材制造实验平台,从宏观形貌、微观组织结构等方面对脉冲激光辅助电弧增材制造和连续激光辅助电弧增材制造两种工艺方法进行了研究,结合数值仿真技术、结构负载声发射检