论文部分内容阅读
ITO(In2O3与SnO2质量比为9:1的铟锡氧化物)薄膜是一种非常重要的高度简并N型半导体材料。ITO薄膜身兼低电阻率、高透光率、机械硬度高、良好的化学稳定性以及强的附着能力等优异性能,使得它在平板显示,交通工具,防护,发光隐身材料、高层建筑、太阳能利用和灵敏器件等领域具有极其广泛的应用。以往针对ITO薄膜的研究表明,生产优质的ITO薄膜工艺存在设备昂贵,生产周期长、工艺复杂等不利因素,本实验就上述问题在喷雾热解技术的基础上利用微波作为热源设计了一种超声波喷雾微波热解直接沉积ITO透明导电薄膜的方法。主要研究内容包括:(1)分析了前驱体物质的差热差重,发现四氯化锡(395.1 K)和三氯化铟(553 K)分解反应的起始温度不同,给后面的温度实验提供理论依据;探究了基片/基座在微波热源下的升温速率(max 91℃/min),研究了前驱体溶液的吸收微波特性,前驱体溶液介电常数略小于水,但是其介电损耗正切tanδ=0.3725,比水的介电特性大一个数量级,表明前驱体氯化物具有良好的吸波特性。(2)系统研究了微波热解温度、前驱体溶液浓度、基片与喷嘴距离等因素对ITO薄膜结构和性能的影响。对比了传统热源和微波热源热解得到的薄膜的光学、电学性能,实验结果表明:微波热解温度在500 ℃,前驱体溶液浓度为0.05 mol/L,基片与喷嘴距离20 cm时制备的ITO薄膜晶粒细小,尺寸分布窄(16~32 nm),表面均匀光滑,同时该薄膜的可见光平均透过率为96.55%,电阻率为2.28×10-4Ω-cm。比传统喷雾热解有更好的表面结构,电阻率低一个数量级。(3)系统探究了不同Sn掺杂量对氧化铟锡薄膜的微观及性能影响,结果表明:掺杂能够降低氧化铟薄膜的电阻率两个数量级,提高薄膜透光率3.85%,与此同时,薄膜的微观形貌,表面粗糙度得到了很大的优化,得到优化的氧化锡掺杂浓度为5~15%。本研究用超声波喷雾微波热解一步法成功制备出了结构、光学和电学性能优异的ITO薄膜,同时可为其它薄膜材料的经济和绿色制备提供技术借鉴。