基于CMOS工艺的太赫兹振荡器和功率放大器研究与设计

来源 :江苏大学 | 被引量 : 0次 | 上传用户:cunkjiang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
太赫兹波在电磁频谱中介于毫米波和光波之间,因其所处频谱的特殊位置使其具有很多独特的优势,在人体安检、无损探测、空间通信、生物医学等领域具有十分广阔的研究前景。振荡器和功率放大器是太赫兹接收与发射系统的重要组成部分,对其研究与应用已经成为当前的热点。随着CMOS工艺的快速发展,晶体管截止频率不断突破使电路在太赫兹频段的实现成为可能,然而随着频率上升到太赫兹频段,寄生效应的加剧和电源电压的下降对振荡器输出功率、相位噪声和调谐范围带来巨大挑战。本文围绕太赫兹振荡器的调谐范围与输出功率提升问题,对基于CMOS工艺的宽带与高输出功率太赫兹振荡器开展了研究与设计,主要研究内容如下:(1)首先从提高太赫兹振荡器的调谐范围出发,基于40nm CMOS工艺设计了一款太赫兹宽带振荡器,提出在基于栅极互联电感的双推结构中引入可变电容和一组开关电容单元。振荡器的中心频率为167GHz,输出功率为-9.3d Bm,调谐范围为155~178GHz,相对频宽为14%,在1MHz频率偏移处的相位噪声为-89.2d Bc/Hz,在10MHz频率偏移处的相位噪声为-109.2d Bc/Hz,功耗为75m W。(2)为进一步提高振荡器的输出功率,基于40nm CMOS工艺设计了一款工作在165GHz的高增益功率放大器,功率放大器由三级差分共源结构级联而成,输入级采用Marchand巴伦将单端信号转换为差分信号,输出级采用变压器完成二路功率合成来提高输出功率,级间匹配均采用变压器实现阻抗匹配。功放在165GHz的饱和输出功率为7d Bm,1d B压缩点为0d Bm,功率增益为15.8d B,功率附加效率为4%。(3)搭建了太赫兹振荡器芯片测试的实验平台,并对设计的振荡器直流特性进行在片测试。测试结果表明,设计的振荡器的实际测试数据和理论仿真吻合,验证振荡器工作在正常状态,并给出了太赫兹振荡器的输出功率、相位噪声和输出频率的测试方案。完成了太赫兹宽带振荡器和高增益功率放大器的级联仿真,当振荡器的频率变化为155~178GHz时,输出功率变化为-1.2~4.09d Bm。在178GHz处的输出功率为-1.2d Bm,在167GHz处的输出功率为4.09 d Bm。本文所采用的太赫兹宽带振荡器级联功率放大器的方案解决了传统太赫兹振荡器调谐范围较低和输出功率不高的问题。在拓宽振荡器的调谐范围的同时,进一步提高了其输出功率。
其他文献
车辆引起的交通噪声已成为城市噪声污染的重要因素,随着新能源汽车的保有量增加,轮胎/路面噪声作为汽车的主要噪声源之一的现状越来越凸显。轮胎噪声预测是低噪声轮胎优化设计的基础,预测模型有助于在轮胎的开发阶段,建立轮胎各项设计参数与轮胎噪声性能之间的映射关系,为具有低噪声性能的轮胎设计提供参考依据。本文采用机器学习方法对TBR卡车子午线轮胎的噪声声压进行预测。具体研究内容与成果如下:(1)以轮胎惯性滑行
学位
对于智能汽车而言,横向控制模块的作用是按照算法的内在逻辑对转向系统进行控制,在保证车辆横向稳定性的同时,使车辆沿期望轨迹自主行驶。模型预测控制(Model Predictive Control,MPC)算法的预测环节能够深度模拟驾驶员根据车辆当前状态和方向盘转角对车辆的运动状态进行预测的行为,因此MPC被广泛应用于横向控制。目前该领域的研究通常默认轮胎始终处于线性工作区域,很少会考虑侧向加速度超过
学位
在双碳战略背景下,发展新能源汽车是实现碳达峰和碳中和目标的重要举措。在新能源汽车中,燃料电池汽车有着零污染零排放的优点是最具发展潜力的新能源汽车之一。质子交换膜燃料电池作为燃料电池车的动力核心,是燃料电池汽车动力性的关键影响因素。然而运行稳定性不高和能量转化效率低下等问题一直制约着质子交换膜燃料电池的发展。双极板是燃料电池与外界物质交换的重要媒介,对反应气体进入气体扩散层以及产物水的排出有着重要影
学位
气固流化床广泛应用于能源化工以及生物质利用等领域,是煤、生物质等燃烧和气化的主要反应器。针对不同直径颗粒对流化床气固两相流动特性的影响,以及混合颗粒的流态化行为进行研究对于提升气固流化床系统性能具有重要意义。本文基于计算流体力学和离散元方法(CFD–DEM)相结合的数值模拟方法,对流态化过程中不同直径颗粒、混合颗粒中掺混不同比例粗颗粒等条件下的气泡形态变化以及颗粒运动特性进行了对比分析,并对数值模
学位
微小尺度燃烧器具有体积小、重量轻、能量密度高等优点,可作为微动力装置的供能模块,近年来受到了广泛的关注。然而,微小尺度燃烧器较小的内部尺寸使得燃料驻留时间缩短,较大的面容比会导致热损失增大,易引发自由基淬灭和热淬熄现象,导致燃烧火焰的稳定性变差。甲醇是一种易获取的清洁燃料,开展微小尺度条件下甲醇燃烧火焰稳定性的研究,对于开发高效、稳定、环保的甲醇微动力装置具有重要意义。本文对微小尺度条件下甲醇燃烧
学位
针对具有自适应巡航功能的纯电动汽车所面临的行驶工况复杂和续驶里程不足的问题,本文提出一种面向工况适应性的速度规划及控制方法。通过对城市道路中典型的车辆行驶场景进行定义并重点对速度规划算法的约束条件和通行及编队策略进行设计以使规划车速适应复杂的交通环境,在基于模型预测控制算法所设计的(Model Predictive Control,MPC)的多目标协同优化控制器和基于滑模控制(Sliding Mo
学位
小型化和轻量化是柴油机的未来的重要发展趋势之一,也是实现节能减排的重要途径。高强化柴油机具有体积小、转速高和功率密度高等特点,但随着转速的提升,更多的燃油需要在更短的时间内完成燃烧,这对高强化柴油机快速混合提出更高的要求。因此,良好的油气室匹配对促进高强化柴油机快速混合和燃烧有着重要的意义。双层分流燃烧室能实现燃油碰撞分流扩散、提高顶隙空间利用率,从而加快油气混合,而双层喷孔布置属于喷油式燃油分流
学位
利用内燃机缸盖振动加速度信号提取燃烧激励响应信号,对内燃机故障诊断、闭环控制和解决新型燃烧技术带来的着火和变工况运行控制困难等问题具有积极意义和实际应用价值。但内燃机缸盖振动加速度信号由燃烧激励响应信号和非燃烧激励响应信号共同组成,且振动信号与激励信号间存在相位偏差,难以直接从振动信号中提取出准确的燃烧过程信息。本文分析了内燃机主要激励源及其振动加速度信号的特性;利用主成分分析法从振动加速度信号中
学位
镉(Cadmium)因为在日常生活中的多样用途,成为了最容易被接触到的有毒重金属之一,同时也是一种广泛存在的环境污染物。食物、香烟烟雾和从事与镉相关产业工作是镉暴露的主要来源。长期镉暴露会对人体各器官产生不良影响,随着镉蓄积程度的加深,会导致肝病、肾病、骨质疏松等症状,严重的甚至会引发癌症。1.为了研究长期镉暴露引起肾脏疾病的机制,本实验建立了不同剂量氯化镉暴露28天的C57BL/6雄性小鼠模型,
学位
农林业废弃物资源巨大,其高效利用要面临许多技术困难。其中,木质素是生物质资源中较为丰富的芳香族化合物,其化学结构复杂、转化效率低、成本较高,这成为木质纤维素利用的障碍;且木质素的利用,目前仍处于低附加值产品的开发阶段。姜黄素作为高值化产品之一,具有抗氧化、抗癌、抗菌等多种生物学活性,但是,目前尚未有任何研究以废弃木质素生物质为原料,通过微生物转化木质素并成功合成姜黄素的报道。同时,姜黄素的实际应用
学位