【摘 要】
:
本文用滑窗方法对独立随机变量序列只有方差存在变点的情形以及独立随机变量序列均值与方差均存在变点的情形进行了研究,给出了变点的检验统计量和变点的估计,给出了检验统计量
论文部分内容阅读
本文用滑窗方法对独立随机变量序列只有方差存在变点的情形以及独立随机变量序列均值与方差均存在变点的情形进行了研究,给出了变点的检验统计量和变点的估计,给出了检验统计量的渐近分布,并证明了变点估计的弱收敛速度与强收敛速度;用似然比方法研究了AR(1)模型中随机扰动项方差存在变点的情形和自回归系数及随机扰动项方差同时存在变点的情形,给出了变点的检验统计量及其渐近分布,并给出了变点的估计;对AR(1)模型的变点问题进行了随机模拟,对不同样本容量下以及变点位置不同时检验统计量的检验效果进行了分析。
其他文献
自然单元方法(NEM)是一种新型的无网格方法,其形函数具有很好的性质,因此受到越来越多的关注。本文重点介绍了NEM方法的基本概念和实现过程,并应用NEM方法分别求解了由椭圆变分
请下载后查看,本文暂不支持在线获取查看简介。
Please download to view, this article does not support online access to view profile.
时代在发展,教育理念也在不断进步和更新.小学体育教学也需要求新求变,只有这样才能实现小学体育的教学目标,才能提高学生的身体素质.从小学体育创新教学的意义出发,结合当前
随机微分方程的解析解一般难以求得,因此数值方法成为研究随机微分方程解的行为的主要工具之一,其中龙格库塔(Runge-Kutta)方法是求解随机微分方程的重要方法之一.另一方面,显
在人们的工作与生活中,逻辑思维能力能够起到非常关键的作用,所以在小学数学教学中,加强对学生逻辑思维能力的培养有着重要的现实意义.数学这门学科,对学生的逻辑思维能力、
本文主要讨论具有幂等元代数上的-Jordanσ导子.设Α是一个具有非平凡幂等元的代数.我们的主要结果是:在一定条件下,Α上的每一个-Jordanσ导子Δ都可唯一表成Δ=d+δ,其中d
引言rn《心理学教程》一书中明确指出人的注意分为有意注意和无意注意.在个体发展中,无意注意的发生先于有意注意.随着人们年龄的增长,知识的丰富,有意注意会超越无意注意占
众所周知,子群的可补性质对有限群的结构有着重要的影响,许多学者利用Sylow对象(准素子群、准素子群的正规化子、中心化子等)的各种可补性和置换性对可解群、超可解群、幂零群等
“下臭棋,读破书,瞎写诗,乱画画,拼命抽香烟,死活不起床,快活得一塌糊涂。”这是怎样一种惬意随性的生活状态?一支画笔,一张书桌,一壶清茶,几缕阳光,忙时专注,闲时慵懒,这些