【摘 要】
:
现代工业推动了我国经济日益发展并壮大,使人民生活品质有了显著提升,然而,它为人们带来便利的同时也逐渐破坏了人们赖以生存的家园。甲醛(HCHO)早在2017年被世卫组织列为一类致癌物,是一种对人体有毒有害的气体。所以对甲醛进行及时有效的检测是极其重要的,目前对甲醛的检测手段应用最为广泛当属金属氧化物半导体(MOS)气敏传感器,但因其在工作中极易受到其他气体的干扰而影响其对甲醛的敏感度,故本文利用丝网
论文部分内容阅读
现代工业推动了我国经济日益发展并壮大,使人民生活品质有了显著提升,然而,它为人们带来便利的同时也逐渐破坏了人们赖以生存的家园。甲醛(HCHO)早在2017年被世卫组织列为一类致癌物,是一种对人体有毒有害的气体。所以对甲醛进行及时有效的检测是极其重要的,目前对甲醛的检测手段应用最为广泛当属金属氧化物半导体(MOS)气敏传感器,但因其在工作中极易受到其他气体的干扰而影响其对甲醛的敏感度,故本文利用丝网印刷技术在SnO2表面涂覆高硅沸石(ZSM-5)膜以提高SnO2气敏传感器对甲醛的响应。本文利用市售ZSM-5型沸石(Si/Al=70)作为改性层,二水合氯化亚锡和二水合草酸为原料通过草酸亚锡的热分解来制备Nano-SnO2,通过对市售ZSM-5型沸石和所制备的Nano-SnO2进行X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)分析可知,市售ZSM-5型沸石颗粒呈棱柱状,且颗粒的棱线处由自上而下深浅不同的孔道组成,颗粒表面较为平整;颗粒尺寸大概在900nm左右,纯度较高,内部孔道呈蠕虫状分布,内部孔径在1.9-2.0nm左右,Nano-SnO2属于四方金红石结构,颗粒呈现不规则球状结构,颗粒分布均匀且没有较大的团聚现象;Nano-SnO2直径在40nm左右。对市售ZSM-5型沸石进行比表面积(BET)分析可知其比表面积为436.26m~2/g,平均孔径为2.0nm。利用丝网印刷技术制备ZSM-5/SnO2复合材料气体传感器,通过改变印刷次数来控制ZSM-5沸石膜的厚度,对制得的传感器表面进行SEM和能谱分析(EDS)分析可知,随着印刷ZSM-5次数的增加,传感器表面形成的ZSM-5膜愈发致密,表面存在SnO2的量也越来越小,对传感器截面进行SEM分析,可以看到SnO2与ZSM-5存在着明显的分界层,且随着印刷次数的增加,ZSM-5膜也变得越来越厚,最厚可达31.8μm。将改性后的气敏传感器对乙醇、甲醇、丙酮、苯、甲醛和氢气进行性能测试,结果发现改性后的传感器对乙醇、甲醇、丙酮、苯和氢气的响应有着明显的下降,而对甲醛有着明显的提升,其中改性层ZSM-5通过丝网印刷印制5层的ZSM-5/SnO2复合材料气体传感器(S(C/Z5))对甲醛的响应提升最为明显,响应值达到44.3,是未改性的5.92倍。说明ZSM-5/SnO2复合材料气体传感器对甲醛的选择性有所提升。通过对传感器性能提升的讨论,本文认为使得其性能提升的原因是ZSM-5内部孔径筛分及沸石的催化吸附等特性共同作用的结果,且根据实验发现,ZSM-5改性层厚度并不是越厚对甲醛的响应就越好,膜厚控制在17.5-20μm之间,才能使ZSM-5膜的效果达到最好。
其他文献
锂离子电池(LIBs)自1991年取得商业化以来,在电子产品、电动汽车以及大规模存储等领域中取得了广泛的应用。但锂离子电池面临着日益严峻的锂资源储量贫瘠、矿产分布不均、生产成本不断上升等关键问题,无法满足未来大规模储能的需求。相比之下,钠离子电池(SIBs)凭借Na资源丰富的矿产储量和易获得的原材料逐渐受到研究者的关注。此外,钠和锂元素具有十分相似的化学性质。在未来的储能领域中,钠离子电池有望替代
锂硫电池(Li-S)作为最具前景的二次电池之一,具有超高理论比容量(1675m Ah g-1)、价格低廉、绿色无污染等优点。但锂硫电池存在正极材料电导率低、体积膨胀高(~80%)以及多硫化物容易溶解在电解液中并导致穿梭效应等缺陷,使得电池容量衰减快,循环性能差。因此锂硫电池的发展及应用被严重限制。本文通过将中空介孔碳分别与硫化锡纳米片和硒化钼纳米片复合来负载单质硫作为锂硫电池正极,来增强正极的导电
随着全球变暖的迅速加剧,可再生能源和绿色能源的短缺严重影响了全球经济。能源方面的累积不足,已引起研究人员的高度关注。探索太阳能电池、超级电容器和锂离子电池等储能设备用以储存水力发电、风力发电等产生的能量。在众多的储能设备中,超级电容器又称为电化学电容器,由于其显著的更长的循环寿命、更高的能量和功率密度、更快的氧化还原反应(充放电)、环境友好性和低成本效益,超级电容器在实际应用中具有极大的灵活性。超
压电材料是一种可将机械能与电能相互转换的智能材料。其中,压电陶瓷因具有较高的压电性能,在传感、医学超声成像与水下探测等高技术领域得到了广泛应用。传统压电陶瓷多含有有毒的铅元素,对人类与自然环境有不良影响,近年来,钛酸钡(Barium titanate,Ba Ti O3)等无铅压电陶瓷受到广泛关注。随着高技术领域对压电材料需求的提升,压电陶瓷制造呈现出结构复杂化与个性化的发展趋势。数字光处理(Dig
钙矾石是水泥混凝土中的重要水化产物,对水泥早期性能和强度发展至关重要,此外,其还是一种潜在的经济性良好的重金属离子固化剂。但钙矾石结构复杂,其形成过程和稳定性对环境十分敏感,而且对不同重金属离子的固化机理相距甚远,这些隐藏在背后的规律仍然是一个未解之谜。研究重金属离子对钙矾石形成和稳定性的影响及重金属离子掺杂前后钙矾石结构的变化,对钙矾石的功能化应用具有重大意义。本文通过化学合成重金属离子掺杂型钙
钢渣是钢铁冶炼过程中产生的一种工业副产品,产量逐年增加。钢渣较低的胶凝性能及潜在的安定性问题是限制其发展及工程应用的关键因素。目前我国钢渣的综合利用率只有30%,大量钢渣随意弃置及填埋,造成土地浪费、地下水及土壤污染的问题日益严峻。通过加速碳化养护钢渣制备高性能混凝土,不仅实现了钢渣的资源化利用,还起到了减少CO2排放的作用。本文基于颗粒最紧密堆积理论,创新提出一种浇筑成型的高性能可碳化混凝土(H
聚合物电介质材料由于具有高击穿场强、良好的柔性和易于加工等优点,被广泛应用于电子电力系统和能源电网等领域。近年来,随着电子器件向着微型化和集成化的方向发展,这就对电介质材料的储能密度提出了更高的要求。为了进一步提高聚合物电介质材料的储能密度,研究者们将目光投向了有机/无机复合材料。根据储能密度的计算公式,储能密度与击穿场强的平方成正比,因此,提高材料的击穿场强能在更大程度上提升其储能密度。最近几年
随着我国公路建设向中西部山区发展,隧道建设发展迅猛,隧道里程逐年增加。我国隧道路面多采用沥青混凝土,其热拌热铺时VOC释放量高,且沥青易燃;同时沥青混凝土中95%为集料,而我国优质天然集料资源日益短缺,亟需寻找替代资源。钢渣作为一种工业副产品,其抗滑耐磨以及与沥青黏附性好等特点赋予了其具有替代天然集料的优势。为此,本文拟开展温拌阻燃钢渣沥青混凝土研究,以期为隧道路面建设提供技术支撑。基于以上背景,
随着“海洋强国”战略和“一带一路”经济合作倡议的提出,海洋开发将成为我国未来发展的重点,而当前应用于海洋工程的传统硅酸盐水泥基材料存在抗冲磨性能差,抗侵蚀性不足,性能劣化严重等问题,基于此,本文在传统硅酸盐水泥的基础上进行矿物优化调整提出高铁低钙水泥体系,其显著特征是C4AF~318%,C3S£50%。由于该水泥C3S含量略低,导致其早期水化活性不高。通过文献调研和实验验证,发现铜离子和铁相具有良
WC-Co硬质合金中WC晶粒尺寸的减小可同时提高硬度和韧性,然而液相烧结过程中数小时的保温时间导致WC晶粒过度长大;用较低吨位的压制设备热压工模具钢预合金粉末制备较大尺寸的工模具钢材料时,为了获得必需的低变形抗力,热压温度通常选择固相线温度附近的高温,导致碳化物强烈的长大趋势。为了避免WCCo硬质合金液相烧结时WC晶粒的过度长大,以及工模具钢预合金粉末在固相线温度附近高温热压时碳化物的过度长大,本