Classification of Acute Lymphoblastic Leukemia using Deep Learning

来源 :山东师范大学 | 被引量 : 0次 | 上传用户:binghemiao
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Leukemia is a type of blood cancer that affects both children and adults,and it is one of the leading causes of death all over the world.Acute lymphoblastic leukemia(ALL)is the most wellknown types of leukemia,which develops in the human bone marrow due to producing more immature white blood cells(WBCs).The techniques like bone marrow examination and manual blood checks that have been used a long time ago are often slow and error-prone sometimes do not give the desired results that we need.Since,with the coming of Convolutional neural networks(CNNs)and the promising results demonstrated in several applications,deep learning techniques for ALL classification are becoming more popular.A computer-aided cancer diagnosis(CAD)system has gained significant attention with the recent advancement in CNNs,because they are cost-effective and easily deployable.In this paper,we proposed two CNN based models to classify ALL cancer.Our first model is based on using an attention mechanism with a deep neural network to address the classification of ALL cancer.We used the normal vs.malignant cells(C-NMC)2019 challenge dataset.A few researchers have used C-NMC 2019 datasets to classify ALL cancer into healthy and cancer classes,but they did not consider the subject level variability.We divide the dataset into 7-Folds based on subject-level variability.This distribution splits the dataset into different folds and make sure that no two folds have the common images of the same subject.Furthermore,to overwhelm the problem of complex morphological similarity between cancerous and healthy cell images,we deployed an attention mechanism,namely Efficient Channel Attention(ECA-Net)in-plane visual geometry group from oxford(VGG16),to extract deep features from the images and give better classification results.Since CNN models required a lot of data for training,different augmentation techniques are applied to C-NMC 2019 challenge dataset.In order to show the effectiveness of our proposed model we also demonstrated different feature maps generated from the first and second blocks of VGG16 with and without the attention module.The demonstrated feature maps clearly concluded that the ECA module forces the module to focus on the cell area,shape,texture and identify high-level features.Our Attention-based CNN provides sufficient results for the classification of ALL into two classes,but there are some problems associated with our model.The first problem is we only utilized C-NMC 2019 challenge dataset for the classification,and we did not check our model on other datasets such as ALL-Image Database(IDB-1)and ALL-Image Database(IDB-2).The second problem associated with our proposed model is that it provides comparatively high falsepositive rates in the classification phase.Finally,there is also a need for a model based on the recently proposed deep neural network to improve accuracy.Therefore,we also proposed a weighted ensemble model based on the information bottleneck for attribution(IBA)theory to classify ALL cancer into healthy and cancer cell images.We used recently proposed pre-trained CNN models such as Efficient Net,Dense Net121,and Res Net50.In order to check the effectiveness of our proposed model,we used three publicly available datasets.First,we train and test plain Efficent Net,Dense Net,and Res Net50 models to classify ALL diseases.Secondly,we used IBA theory with our proposed models,which helps the model in extracting and refining feature representation relevant to classification,and also aids in the final accuracy of CNN.Finally,since deep learning models differ in design and complexity,they may not provide the same results for a specific problem domain.Some models will perform better some will give poor results.As a result,it would be beneficial if we assigned higher weights to the models that are performing better,allowing us to utilize the efficiency of a model which is contributing more to the final accuracy as compared to the model that performs poorly.The obtained findings showed that the proposed model could be used to identify ALL and might also assist pathologists in diagnosing ALL cancer in its early stages,potentially saving more lives.
其他文献
初中英语阅读是英语学习过程中的一个重要环节,这个阶段是形成语感和英语背景文化关联的初步阶段和关键阶段。然而,现阶段初中生英语阅读存在词汇量欠缺、缺乏阅读兴趣、缺乏良好的阅读习惯、缺乏阅读技巧和课后阅读量严重缺乏等问题。初中英语教师的阅读教学也存在一些弊病,如,教学目标把握不当;缺乏一定的阅读教学策略与方法;提问层次单薄,思维训练不到位、忽视小组合作等。以上问题不仅阻碍了教师自身的发展,也使学生的英
学位
与空间有关的语言表达是认知语言学的重要研究对象。日语当中指示静态空间关系的语言表达属于“空间相对名词”的词类,与中文的“方位词”相对应。关于日语空间相对名词的研究以“上/下”“前/后”居多,而针对“中”的研究则尚不充分。然而中文母语者在学习日语时对于“中”的误用,却是一个经常被关注的问题,因此有必要探讨避免母语负迁移的策略。空间相对名词“中”属于中日同形词,阐明其背后潜藏的认知机理有助于解决中文母
学位
验证码是一种区分访问者是计算机还是人类的反图灵测试。现如今,很多网站设置验证码以防止恶意攻击。但是,验证码的应用亦有两面性,随着互联网的发展,有部分黑灰产业将平台从线下移至线上,通过线上充值交易等获得不法资金,这一类网站为了躲避网安部门的自动巡检,常常也会设置验证码机制,将充值账号隐藏在验证码之后,从而增加了网络巡检的成本。不过,这一类网站的运营成本较为低廉,所以通常都使用成本较低的文本验证码,这
学位
近年来,我国经济结构的不断调整、金融市场本身的发展限制以及贷款结构开发的不合理性,均是加剧我国银行业违约风险水平不断创新高的重要原因,中国银行业整体的业务规模和贷款总额的发展节奏也从早期的快速逐渐转为缓慢,使商业银行面临控风险、稳绩效的强大压力。目前商业银行的净利息收入仍是其营业收入的主要来源。公司层面而言,商业银行开展信贷业务,信贷结构的合理制订或有效调节与其利息收入和利润程度是紧密联系的;实际
学位
目的 探讨惊恐障碍的治疗方法。方法 将60例惊恐障碍患者随机分为两组,各30例。对照组给予帕罗西汀治疗,研究组加用rTMS治疗。分别在治疗前及治疗后第1、2、4、6周末采用HAMA进行评定,采用TESS评定不良反应。结果 随治疗时间的延长,两组HAMA评分均呈下降趋势,但研究组下降幅度优于对照组;研究组有效率为86.67%,高于对照组的63.33%(χ~2=4.36,P=0.037);两组不良反应
期刊
本报告是笔者基于口译实践而完成,选取的口译材料是2012年诺贝尔文学奖获奖者莫言的获奖感言。2012年12月8日,莫言在位于首都斯德哥尔摩老城的瑞典文学院发表演讲“讲故事的人”。作为诺贝尔文学奖得主,莫言此次讲话备受国内外关注,其言语朴素,表达内容却丰富深刻,极富内涵。作者在口译的过程中发现,要想将讲话内容与含义译为英语,除了语言能力,还需要时刻具备跨文化交际意识,在此基础上寻求口译策略,应对跨文
学位
随着互联网技术的不断发展,机器翻译应运而生,为语言服务行业带来了翻天覆地的变化。机器翻译在文本处理速度和处理量方面具有人工翻译无法比拟的优越性,但在翻译质量和准确度方面,机器翻译仍存在很大的提升和优化空间。而译后编辑可以有效改善机器翻译,是人机交互翻译的重要体现。作为一种行之有效的翻译辅助手段,译后编辑已成为机器翻译系统的有机组成部分。因此,“机器翻译+译后编辑”模式得以推行,既能保证翻译质量,也
学位
智能终端与互联网技术相结合促进了移动社交网络的迅速发展,移动社交逐渐成为日常生活中不可或缺的组成部分。作为人们展示兴趣、技能的平台,移动社交网络成为人们开展社交活动的重要载体。用户匹配在移动社交网络提供的各种服务中发挥着重要作用,精确高效的用户匹配,可以提高社交服务的质量,促进用户之间的交互。在用户匹配中,个人属性配置文件(特征描述和社交习惯)通常作为判断用户关系是否符合特定要求的依据。然而,个人
学位
时间序列是具有时序关系的数据集合,广泛存在于自然界和社会生产生活中。受内、外部因素影响,时间序列通常具有非线性、不确定性的特征。如何从历史数据中学习其潜在的规律,预测数据未来的变化趋势,一直是研究者关注的课题。模糊认知图具有数值推理、可解释性等特点,在时间序列预测中得到广泛应用。本文在模糊认知图的基础上做了进一步的改进来分析和研究时间序列,主要包括以下内容:(1)为了在不确定的环境下对时间序列进行
学位
由于人口数量不断增多,在一些公众场所内,容易聚集大量人群。当人群流量密集的场所中出现火灾、坍塌等紧急情况时,需要及时的对场所内的人员进行疏散。先前有学者通过组织一定数量的人员在某一特定场所内进行疏散演习,但此类方法需要耗费大量人力物力且不易复现。随着计算机仿真技术的发展,有学者开始在人群疏散领域中使用计算机仿真技术来模拟人群疏散过程,人群疏散仿真方法相比于传统的组织人员进行疏散演习方法可以节省人力
学位