论文部分内容阅读
透明导电氧化物(TCO)薄膜具有良好的导电性、优异的透明度等光电特性,已在光伏电池组件、平面显示器、触控面板、发光二极管(LEDs)、气敏传感器等不同领域获得了广泛应用。值得注意的是,TCO薄膜的透明度和导电性往往是矛盾和相互抑制的。而在应用于许多光电器件尤其是太阳能电池时,良好的综合光电性能是迫切需要的。为了满足高透明度和低方阻的应用需求,人们对TCO薄膜的研究除了集中于制备方法上外,还包括对制备好的TCO膜进行后续处理(如表面微纳米结构复合、热退火、激光退火)和双层/多层复合优化。在TCO薄膜中,掺氟二氧化锡(FTO)薄膜成本相对较低(不含昂贵的铟元素),且热稳定性和化学稳定性好,近些年也得到了广泛的研究和应用。但是与掺锡氧化铟(ITO)薄膜相比,FTO薄膜的导电性略差,且相关工艺及后续处理研究不够深入,性能优化途径方面还有拓展空间,这些都需要材料学界的研究者进一步研究辨识和探讨。基于此,本文以FTO透明导电膜为对象,开展了表面金属微纳米粒子复合、热退火处理、表面激光处理、双层复合优化与后续处理等方面的研究,获得了一些有意义的结果。1、采用直流磁控溅射法和管式炉内热退火处理的方法在FTO膜表面复合Ag粒子结构,对比了不同基片材料表面Ag粒子形成的条件,重点讨论了退火温度、退火时间和原始Ag膜厚度对FTO膜表面Ag粒子的形成和形貌以及薄膜光电性能的影响。结果表明,与单晶硅和载玻片基片相比,FTO膜表面开始形成Ag粒子所需的退火温度更低,退火时间更短。实验中选用原始Ag膜厚度为200nm、退火温度为500℃左右、退火时间为20~30min时可在FTO膜表面获得形态相对良好的Ag粒子,此时在薄膜透射率曲线上出现对应于Ag粒子表面等离子体共振吸收的透射峰。2、采用管式炉中热退火的方法对FTO薄膜进行了退火处理,研究了不同的气氛条件、退火温度和退火时间等对薄膜结构、表面形貌及光电性能的影响,深入分析了造成这些影响的机理,并通过计算性能指数对各薄膜样品的综合光电性能进行了评价。结果表明,在氮气、空气和氧气中退火时,薄膜结晶性均得到一定的改善,但在氮气中退火后薄膜的综合光电性能最好。在氮气中退火时,退火时间对FTO膜透光率和方块电阻的影响不如退火温度的影响显著,且500℃下退火20min后FTO膜的综合光电性能最好,性能指数为5.56×10-3Ω-1。3、采用波长为532nm的纳秒脉冲激光对FTO膜表面进行辐照处理,研究了激光能量密度和扫描速度对薄膜表面形貌、透光率和导电性的影响。结果表明,激光能量密度和扫描速度适中可使FTO膜表面获得较好的退火效果,在激光作用区域内的晶粒通过再结晶过程长大,使得其透光率提高,而方块电阻却减小。实验中获得的最佳激光参数为能量密度F=1.02J/cm2和扫描速度v=10mm/s,此时FTO膜在380~780nm波段的平均透光率由原来的75.4%提高到了82.7%,方块电阻由原来的10.20Ω/口降低到了8.83Ω/口。4、采用直流磁控溅射法在FTO膜上镀制掺铝氧化锌(AZO)膜制备出AZO/FTO双层复合膜,研究了AZO膜层厚度对AZO/FTO双层复合膜结构和微观形貌以及光电性能的影响,初步探讨了其影响机理。结果显示,随着AZO膜层厚度的增大,AZO/FTO膜的表面粗糙度逐渐降低,方块电阻先减小后变化趋于平缓,透光率则先增大后减小。实验中,AZO膜层厚度为495nm的AZO/FTO双层复合膜具有最佳的光电性能,性能指数达到1.43×10Ω-1。5、对优化制备的AZO/FTO双层复合膜进行后续热退火处理和激光表面辐照处理,进一步实现了薄膜性能优化,研究了不同参数下AZO/FTO膜形貌和光电性能的变化。结果显示,热退火可提高薄膜的致密度和平整度,薄膜的透光率随着退火温度升高或退火时间延长而小幅度提高,而方块电阻在温度达到300℃前已有较大程度的下降,其后温度的升高及500℃下退火时间的延长对AZO/FTO膜的方块电阻的影响并不显著;激光辐照处理也可对AZO/FTO膜起到一定退火作用,采用1.02J/cm2的能量密度和10mm/s的扫描速度处理时可达到最佳效果。