基于图卷积网络和细粒度情感分析的推荐算法研究

来源 :安徽大学 | 被引量 : 0次 | 上传用户:wgsnt1
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着互联网的飞速发展,人们可以从互联网上获得的信息也与日俱增。而信息的激增也会带来信息过载的问题,人们虽然可以更容易地找到自己所需要的信息,但对自己而言无用的信息也随之激增。为了解决信息过载问题给用户带来的困扰,推荐系统应运而生。在推荐系统技术中,协同过滤算法是使用最为广泛的算法。但协同过滤算法发展至今仍需解决诸如数据稀疏性、冷启动等众多问题。本文针对协同过滤算法的缺陷和现有方法的不足进行深入研究,提出了改进的方案,以此实现更精确的推荐。协同过滤算法的核心思想是根据用户和物品产生的交互来计算用户之间的相似度,再基于此预测用户可能感兴趣的其它物品。在现有的一些研究中,图神经网络被引入到模型中来度量用户之间的相似度,并取得了较好的结果。但现有工作大多没有考虑不同邻域的重要性也不尽相同,未能对邻域进行区分。同时,用户的评论文本中包含着较多的情感信息,有众多研究者也在尝试将评论文本中包含的情感信息用于推荐任务,现有的工作未能考虑融合评论文本中的众多特征来度量用户兴趣度。因此,本文从邻域区分和多特征融合两方面进行研究。本文主要做了如下的工作:1.联合轻量图卷积网络和注意力机制的推荐模型研究。现在常用的协同过滤算法或基于矩阵分解算法来挖掘用户和项目之间的线性关系以用于相似度的度量,或使用神经网络来建立非线性函数。这些算法大多忽视了用户和项目之间的高阶连接关系,而高阶连接关系可以获得更多的协同过滤信号。图卷积网络则可以有效捕获这些高阶连接关系。而现有模型对所有邻域的权重统一给定了一个固定值,未能很好地按照领域的重要程度对领域进行区分。本文通过引入注意力机制来解决这个问题,提出了联合轻量图卷积网络和注意力机制的推荐算法。最后在Gowalla、Yelp2018和Amazon-book三个真实数据集上进行实验,验证了模型的可行性。2.融合细粒度情感分析的推荐算法研究。为缓解数据稀疏性问题,利用用户的评论文本信息也是一个比较流行的研究方法。对于评论本文的众多特征,如果能有效利用并加以融合,对推荐系统性能的提升将会有很大的推动作用。本文主要选取以下三个特征加以融合:针对不同评价的相对情感得分;用户评论文本对其他用户的帮助程度,即评论的影响力;用户的评分与评论表达的情感是否一致,即一致性。同时结合粗粒度层面的兴趣度度量方法来进行推荐。最后在酒店评论数据集上进行实验,实验结果表明,在数据稀疏性问题上,融合评论文本的众多特征可以有效应对该问题,同时推荐算法的推荐效果也得到进一步的提升。
其他文献
近年来,为了解决“最后一公里”配送中存在的成本高和效率低的问题,众包物流和无人机配送物流已经成为研究热点。众包式无人机配送系统结合众包物流和无人机配送物流的优势,不仅能够有效地整合无人机资源,使具有无人机配送需求的小型配送站无需购买大量的无人机,而且能够提高配送效率和降低总的配送成本。然而,现存的众包系统一方面未考虑无人机配送任务的特殊性,另一方面普遍采用中央服务器作为众包平台,容易出现单点故障、
自20世纪70年代以来,处理器的研发趋势始终关注如何提高内核中指令的执行效率,而主存储器却主要聚焦于存储容量的增大,忽略了速度的提升。处理器与主存发展趋势的不同,造成了两者之间访存速度难以匹配,直接导致了影响计算机性能的“存储墙”问题。为了试图弥合处理器与主存之间的速度差,计算机架构师们普遍采用在系统中插入多级缓存的层次型存储结构。然而,缓存的容量与主存相比毕竟有限,访存期间一旦出现缓存缺失,就会
随着5G移动通信技术的普及,用于无线体域网的可穿戴天线在医疗、物联网、军事等领域具有广阔的应用前景。可穿戴天线的设计需要综合考虑人体复杂的电磁特征以及特殊的应用环境,为满足应用需求,其不仅需要具有小尺寸、低剖面、易与人体共形等结构特性,同时还要具有强的弯曲鲁棒性能、良好的人体加载性能以及满足天线对人体辐射的健康标准等性能特性。严格的要求增加了可穿戴天线的设计难度,目前大多数可穿戴天线的设计难以实现
作为一种重要的机器学习方法,聚类算法在许多数据分类领域得到了广泛的应用,人们可以利用聚类算法完成数据挖掘、图形模式识别、图像分割等工作,并取得了不错的成绩。然而,由于聚类算法无监督学习的特点,对聚类结果的质量进行评估就成了一项重要的研究内容。与此同时,许多聚类算法必须在开始运行之前设置目标数据集的类簇个数,但是在通常情况下,这个数字往往难以事先获知。围绕上述两个问题,本文从簇间分离度的衡量方法入手
超密集网络(Ultra Dense Network,UDN)中,被赋予计算功能的小基站由于计算能力受限容易过载,从而影响用户服务质量。另一方面,UDN大量部署小基站扩展系统容量的同时也导致了网络的致密化,数量频繁且不必要的小区切换将会产生额外网络能耗。以上存在的两大网络资源管理问题制约UDN的发展,值得深入研究。在移动边缘计算(Mobile Edge Computing,MEC)中,往往以消极的方
在大规模机器通信(massive machine type communication,m MTC)场景中,基站接收到耦合在一起的信号,如何高效准确的从耦合数据中恢复用户的传输数据成为了难题。由于m MTC中潜在的稀疏特性,压缩感知(Compressed Sensing,CS)技术可以用来联合检测上行免调度NOMA系统中的用户数据和活跃性。目前,基于CS的贪婪类算法因其复杂度低、重构精度高等优势,
大规模MIMO(Massive Multiple-input Multiple-output,Massive MIMO)技术在发射器和接收器中使用多天线阵列可以数倍地提高网络连接的容量,增加信号的收发路径和频谱效率。Massive MIMO带来优势的同时也引发了一系列的问题,由于天线数目变多,导致信道增益矩阵的维度变大。因此,对基站端进行信号检测的算法提出了更高的要求,目标是实现低复杂度且高性能的
近年来随着信息收集设备技术的进步和普及,现实世界中的数据收集难度大大降低。但是数据半结构化甚至无结构化特点易导致样本的维度达到几万甚至几十万维,需要特征选择等算法来解决所带来的维度灾难问题。然而传统的特征选择方法更倾向于选取具有鉴别性的特征,忽略了数据内在的平衡性,无法得到正确结果。因此在数据挖掘和机器学习中,急需行而有效的算法从原始数据特征集中选择相关的特征。在许多真实的数据挖掘应用中,如无线传
为了支撑上层自动驾驶功能,一辆自动驾驶汽车通常安装大量的传感器来获取道路状况,并安装众多应用程序来保障其正常运行。然而,传统的车内网络缺少细粒度的认证单元和各类加密单元,很多应用程序可以过度访问自动驾驶车辆上的敏感数据,造成车辆的隐私泄露。此外,车载相机系统易受到光线影响,在极端环境下感知的准确性有限;针对这一问题,一些学者提出将车辆自组织网络与自动驾驶技术结合,提高自动避障性能,然而保障消息的安
采用主动有源装置如雷达等设备来估计目标的位置属于有源定位的范围,有源定位的一个缺点是很容易受到反辐射打击或电子干扰,使得系统的安全得不到保障,而无源定位技术的出现很好的解决了这个问题。无源定位技术相对于有源定位的主要区别在于其自身不需要发射信号,它是一种直接利用目标发射或反射的信号来获取目标位置的技术,其基本原理是利用多个位置明确的接收站共同接收目标发射或反射的信号,从中提取出能用来获取目标位置参