【摘 要】
:
寻找夸克胶子等离子体(QGP)是高能重离子碰撞的主要研究目标之一,探寻QGP的存在和研究QGP的性质一直是高能物理学的热点,对QGP的研究可以加深我们对自然界微观相互作用的理解。此外,宇宙极早期的存在形式被认为是类QGP形式,因此QGP的研究对宇宙早期演化的认识也有着十分重要的作用。随着实验技术和理论研究的发展,2000年,美国布鲁克海文国家实验室(BNL)宣布发现了QGP的存在,并显示QGP几乎
论文部分内容阅读
寻找夸克胶子等离子体(QGP)是高能重离子碰撞的主要研究目标之一,探寻QGP的存在和研究QGP的性质一直是高能物理学的热点,对QGP的研究可以加深我们对自然界微观相互作用的理解。此外,宇宙极早期的存在形式被认为是类QGP形式,因此QGP的研究对宇宙早期演化的认识也有着十分重要的作用。随着实验技术和理论研究的发展,2000年,美国布鲁克海文国家实验室(BNL)宣布发现了QGP的存在,并显示QGP几乎是完美的流体。理论对涡旋和极化的研究表明极化可以作为探测QGP的良好探针,并且BNL的实验已经探测到了Λ超子的极化信号,这打开了高能重离子碰撞研究的一个新窗口。在理论研究和实验研究之外,高能物理唯象学作为越来越重要的高能物理学分支,逐渐发展为一门独立的学科,为高能物理学提供了连接理论和实验的研究方法。本文运用部分子-强子级联模型PACIAE,模拟了金核-金核在每核子对质心系能量(SNN)1/2=7.7、11.5、14.5、19.6、27、39、62.4和200 GeV下的碰撞,进行了涡旋与极化的相关研究。本文研究工作包括:(1)适应于PACIAE模型,在简单粗粒化流体处理的基础上,改进并使用了推广的粗粒化流体化处理方法,得到流体的速度场并提取温度,该方法能有效减小流体化的起伏误差。(2)针对QGP可能存在的部分子演化阶段,对相应的四种流体涡旋进行计算,探究高能重离子碰撞中部分子流体涡旋演化对时间、碰撞能量和碰撞参数的依赖性和空间分布等性质。结果显示:部分子流体涡旋大小随着时间的增加,先增大后减小,转变能量在10~15 GeV;流体涡旋随着碰撞能量增大整体呈现减小的趋势;涡旋大小随着碰撞参数增大而单调增大,且越大的碰撞参数,涡旋随时间的衰减越快;在空间分布上,涡旋在反应平面有着四极结构的分布特征。在研究过程中,PACIAE模型中出现了特殊的零涡旋现象:部分子系统的整体涡旋会变为零并反向增大。(3)在涡旋基础上,计算了Λ超子的全局极化,研究PACIAE模型中Λ超子全局极化对碰撞能量、碰撞参数和时间截断的依赖性等性质。研究结果表明:Λ超子的全局极化随着碰撞能量增加而减小,在质心系能量(SNN)1/2=7.7-62.4 GeV的范围内,极化大小由2.41%逐渐减小至0.73%;Λ超子的全局极化随着碰撞参数的增加显示出先增大后减小的非单调依赖性,在7.7 GeV的Au+Au碰撞中,碰撞参数6-10 fm的极化平均值为2.56%;Λ超子的全局极化随着选取的时间截断增大而减小。最后,我们选取不同的涡旋定义进行了相应极化的计算和比较。
其他文献
随着无线通信系统的高速发展,周围环境空间中的微波能源越来越丰富。将周围环境中的微波能源进行收集并转换为直流电输出,为低功耗电子设备供电的技术称为微波能量收集技术。它具有可植入和可持续收集的优势,其核心器件是整流天线。但是传统的整流天线都是以刚性材料作为介质基板,以金属作为导体材料。因此具有不易弯折以及弯折稳定性差的缺点,利用这些整流天线为设备供电会带来诸多不便。而柔性整流天线有弯折稳定性好,易与设
近年来,由于新型光子学器件的潜在应用,光子自旋霍尔效应引起了人们的广泛关注。光子自旋霍尔效应是指一束空间受限的偏振光在两种不同介质表面发生反射或者折射时,由于相对论效应自旋-轨道耦合作用的存在,在其垂直入射面的方向发生一小段位移的现象。然而,这种偏移通常发生在亚波长尺度范围内难以测量,因此如何增强和调控光子自旋霍尔效应尤为重要。基于超材料在电磁特性调控方面的优异性能,本文提出了以双曲超材料为基元的
大米镉(Cd)污染时有发生,传统的重金属检测技术无法满足现场检测、大量检测的要求。激光诱导击穿光谱(Laser-induced Breakdown Spectroscopy,简称为LIBS)技术用于检测大米Cd含量,具有实时、在线和快速的优势,但LIBS技术还存在灵敏度低和基体效应的问题。因此本文提出使用基底辅助的方法来改善LIBS技术的检测限,减弱基体效应对LIBS技术检测准确度的影响。本文主要
为改善钙钛矿太阳能电池(Perovskite Solar Cells,PSCs)吸收光谱局限于可见光范围的问题,本文从稀土掺杂发光材料的上下转换并行发光性能方面进行考虑,通过优化稀土离子之间的掺杂比例,制备出上下转换并行发光性能优良的NaGdF4:Yb3+,Er3+@NaGdF4:Eu3+核壳稀土颗粒,并将其应用到钙钛矿太阳能电池的介孔层中。深入研究了其上下转换并行发光在PSCs中的作用机理,从而
物联网、自动驾驶、虚拟现实等新型业务对第五代移动通信技术(the fifth Generation wireless systems,5G)提出了更高的要求。毫米波(Millimeter-wave,mm Wave)由于其丰富的频谱资源,被作为解决5G通信中高速率、低时延的关键技术之一。研究毫米波在各类典型环境中的传播特性,对毫米波无线通信系统的设计和部署有着指导性作用。本文选择室内环境开展了面向5
谱域光学相干层析成像(Spectral Domain Optical Coherence Tomography,SDOCT)技术是一种广泛应用于生物医疗科学领域的成像技术,该技术具有分辨率高、安全、不直接接触病体等优点。受限于OCT系统的成像深度以及OCT探针的尺寸,使其在在体探测领域的应用大大减少,因此,研究一种小尺寸OCT探针以及高成像深度、高分辨率的SD-OCT系统意义重大。本文对OCT探针
矢量涡旋光束是一种同时具有偏振态空间变化和螺旋波前结构的新型光束。由于其新颖的光学特性,矢量涡旋光束在超分辨率成像、精密度量、光通信和激光加工等领域有着巨大的应用前景。早期人们对矢量涡旋光束的研究主要集中在柱矢量涡旋光束,随着全庞加莱球、高阶庞加莱球等偏振表征方式的提出,人们已经创建了许多具有奇特结构的矢量涡旋光束。与传统的均匀偏振光束不同,矢量涡旋光束在聚焦场、散射场和倏逝波等高度非均匀场中可以
光纤端面横截面积小、纵横比大,是一个独特的非常规微纳器件集成平台。随着纳米加工工艺技术的发展和进步,在光纤上制备微纳光学器件,发展更为先进的全光纤技术,能够在光学滤波和光学传感等多个领域实现巨大的价值。本论文总结了光纤微纳结构的发展现状,着重介绍了基于光纤端面微纳结构的应用,并对比了光纤端面微纳结构的加工工艺,为本文中微纳谐振腔和传感单元的实现提供基础。本论文在光纤端面上制备金属光栅,并与金属薄膜
声压传感技术在地质勘探、环境检测等领域有着重要的应用。传统光纤声压传感技术采用的强度解调方法易受到光源光强抖动影响,使其难以一直稳定工作在正交相位点(Q点),并且强度解调法探测范围是有限的,而相位解调方法则没有这些限制。论文结合膜片式光纤Fabry-Perot(F-P)声压传感单元和基于光学游标效应的相位解调算法,实现声压传感器测量性能的提升。论文从高灵敏度、微型声压传感需求出发,基于多光束干涉理
目前钙钛矿太阳能电池的光电转换效率发展迅速,并且由于其工艺简单、成本低和光电性能优异等特点引起了众多太阳能电池科研工作者的研究热情。传统的钙钛矿太阳能电池的光吸收层材料为甲基碘化铅铵(CH3NH3Pb I3),由于其固有带隙只能吸收780 nm以下可见光,对占据太阳光光谱43%的红外光无法进行有效的利用,影响了钙钛矿太阳能电池光电性能的进一步提升。为了克服这个缺陷,我们设计并制备了具有荧光增强效应