基于光学游标效应的微F-P腔解调方法及声压传感

来源 :武汉理工大学 | 被引量 : 0次 | 上传用户:bendehen123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
声压传感技术在地质勘探、环境检测等领域有着重要的应用。传统光纤声压传感技术采用的强度解调方法易受到光源光强抖动影响,使其难以一直稳定工作在正交相位点(Q点),并且强度解调法探测范围是有限的,而相位解调方法则没有这些限制。论文结合膜片式光纤Fabry-Perot(F-P)声压传感单元和基于光学游标效应的相位解调算法,实现声压传感器测量性能的提升。论文从高灵敏度、微型声压传感需求出发,基于多光束干涉理论设计了以厚度100 nm金膜为敏感膜片的光纤F-P声压传感单元;对传感单元的光学特性、膜片的振动特性和基于光学游标效应的解调算法进行了理论仿真分析;采用溶解牺牲层制备工艺,制作了光纤F-P声压传感单元;搭建实验系统对强度和相位两种解调方式的微腔声压传感特性进行了测试。论文主要工作包括:传感机理的理论分析与3×3耦合器相位解调法的改进。结合模式耦合理论,分析了端面反射率和腔长对光纤F-P干涉谱的影响,以及传感膜片的形变灵敏度和频率响应特性;对比分析了引入光学游标效应的光纤F-P和Michelson干涉仪(MI)中,腔长(臂长差)对系统干涉谱的影响。理论分析发现:端面反射率和腔长均会影响干涉谱的对比度;传感膜片的形变灵敏度随着频率的增加呈现先增加后减小的趋势,谐振频率对应的形变灵敏度最大;光纤F-P腔长影响系统干涉谱的包络,而MI臂长差则影响内部干涉谱的周期。基于椭圆拟合,改进了传统3×3耦合器解调算法,理论和实验分析证明该方法可以很好的克服3×3耦合器的插入损耗和相位差偏差对解调结果的影响。膜片特性分析与传感单元制备、测试。利用第一性原理和椭偏仪,计算并测量了不同厚度金膜的介电常数,验证了金膜达到一定厚度时的介电常数与体材料一致;理论分析了传感膜片的厚度、半径对声压响应特性的影响:传感膜片的灵敏度随膜片半径增加、厚度减小而增加;采用溶解牺牲层的制作工艺制备了光纤F-P声压传感单元;测量了腔长为68.3μm的传感单元在空气和水中的光谱与系统光谱,传感单元的干涉对比度分别为15.5 d B和12.6 d B,满足后续的解调需求。传感单元水声性能测试。通过振动液柱法水声测试系统,对比强度解调和相位解调在20-900 Hz频域的声压响应,测试结果表明:传感单元具有线性的声压响应;强度解调方法的频域响应较平坦;而相位解调方法在声频率为800 Hz,传感单元腔长为68.3μm时,对应的最小可探测声压为10.4 mPa/Hz1/2。
其他文献
风机叶片结冰会导致发动机的功率损耗、风机叶片断裂,甚至会导致整个风机塔报废等一系列严重后果,因此需要及时地检测并清理叶片上的冰层。传统的风机叶片结冰故障检测与预测方法大多是基于传感器的方法,这类方法虽然检测效果较好,但是费时费力且成本较高,会极大的增加运营成本。目前,数据采集与监视控制系统已经广泛应用于国内的风电机组,该系统能够获取大量风力发电机组运行的实时数据信息。对这些数据进行分析能够有效的实
学位
能源紧缺和环境污染问题一直限制着生产力的发展。为了解决当今社会的可持续发展问题,大力开发利用清洁能源刻不容缓。而风能作为全世界广为分布的可再生能源得到了大规模的开发利用。随着风机制造技术的进步和风电控制技术的成熟,风电装机总量和相关产业市场也越来越大。然而,由于风能本身的随机性和间断性,风力机运行时通常难以维持在最大功率,并网时还会影响电网稳定运行并减弱电能质量。因此,本文提出了一种含蓄电池的永磁
学位
随着无线通信系统的高速发展,周围环境空间中的微波能源越来越丰富。将周围环境中的微波能源进行收集并转换为直流电输出,为低功耗电子设备供电的技术称为微波能量收集技术。它具有可植入和可持续收集的优势,其核心器件是整流天线。但是传统的整流天线都是以刚性材料作为介质基板,以金属作为导体材料。因此具有不易弯折以及弯折稳定性差的缺点,利用这些整流天线为设备供电会带来诸多不便。而柔性整流天线有弯折稳定性好,易与设
学位
近年来,由于新型光子学器件的潜在应用,光子自旋霍尔效应引起了人们的广泛关注。光子自旋霍尔效应是指一束空间受限的偏振光在两种不同介质表面发生反射或者折射时,由于相对论效应自旋-轨道耦合作用的存在,在其垂直入射面的方向发生一小段位移的现象。然而,这种偏移通常发生在亚波长尺度范围内难以测量,因此如何增强和调控光子自旋霍尔效应尤为重要。基于超材料在电磁特性调控方面的优异性能,本文提出了以双曲超材料为基元的
学位
大米镉(Cd)污染时有发生,传统的重金属检测技术无法满足现场检测、大量检测的要求。激光诱导击穿光谱(Laser-induced Breakdown Spectroscopy,简称为LIBS)技术用于检测大米Cd含量,具有实时、在线和快速的优势,但LIBS技术还存在灵敏度低和基体效应的问题。因此本文提出使用基底辅助的方法来改善LIBS技术的检测限,减弱基体效应对LIBS技术检测准确度的影响。本文主要
学位
为改善钙钛矿太阳能电池(Perovskite Solar Cells,PSCs)吸收光谱局限于可见光范围的问题,本文从稀土掺杂发光材料的上下转换并行发光性能方面进行考虑,通过优化稀土离子之间的掺杂比例,制备出上下转换并行发光性能优良的NaGdF4:Yb3+,Er3+@NaGdF4:Eu3+核壳稀土颗粒,并将其应用到钙钛矿太阳能电池的介孔层中。深入研究了其上下转换并行发光在PSCs中的作用机理,从而
学位
物联网、自动驾驶、虚拟现实等新型业务对第五代移动通信技术(the fifth Generation wireless systems,5G)提出了更高的要求。毫米波(Millimeter-wave,mm Wave)由于其丰富的频谱资源,被作为解决5G通信中高速率、低时延的关键技术之一。研究毫米波在各类典型环境中的传播特性,对毫米波无线通信系统的设计和部署有着指导性作用。本文选择室内环境开展了面向5
学位
谱域光学相干层析成像(Spectral Domain Optical Coherence Tomography,SDOCT)技术是一种广泛应用于生物医疗科学领域的成像技术,该技术具有分辨率高、安全、不直接接触病体等优点。受限于OCT系统的成像深度以及OCT探针的尺寸,使其在在体探测领域的应用大大减少,因此,研究一种小尺寸OCT探针以及高成像深度、高分辨率的SD-OCT系统意义重大。本文对OCT探针
学位
矢量涡旋光束是一种同时具有偏振态空间变化和螺旋波前结构的新型光束。由于其新颖的光学特性,矢量涡旋光束在超分辨率成像、精密度量、光通信和激光加工等领域有着巨大的应用前景。早期人们对矢量涡旋光束的研究主要集中在柱矢量涡旋光束,随着全庞加莱球、高阶庞加莱球等偏振表征方式的提出,人们已经创建了许多具有奇特结构的矢量涡旋光束。与传统的均匀偏振光束不同,矢量涡旋光束在聚焦场、散射场和倏逝波等高度非均匀场中可以
学位
光纤端面横截面积小、纵横比大,是一个独特的非常规微纳器件集成平台。随着纳米加工工艺技术的发展和进步,在光纤上制备微纳光学器件,发展更为先进的全光纤技术,能够在光学滤波和光学传感等多个领域实现巨大的价值。本论文总结了光纤微纳结构的发展现状,着重介绍了基于光纤端面微纳结构的应用,并对比了光纤端面微纳结构的加工工艺,为本文中微纳谐振腔和传感单元的实现提供基础。本论文在光纤端面上制备金属光栅,并与金属薄膜
学位